Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2024, Issue 17, Pages 9–11
DOI: https://doi.org/10.17223/2226308X/17/2
(Mi pdma632)
 

Theoretical Foundations of Applied Discrete Mathematics

Exact formula for expectation of number of pairs of coinciding $s$-chains in a random binary sequence with fixed number of zeroes and ones

V. I. Kruglov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
DOI: https://doi.org/10.17223/2226308X/17/2
Abstract: We consider all possible binary sequences $X=(X_1,X_2,\ldots,X_{a+b})$ of length $a+b$ consisting of $a$ ones and $b$ zeroes. For each such a sequence, we count the number of pairs of its subsequences of a given length $s$ (so called $s$-chains) that have coinciding values of their elements. Assuming all these sequences $X$ to be equiprobable, we propose exact formula for expectation of number of pairs of coinciding $s$-chains. For any $s$, $s<a$ and $s<b$, and any $i$, $1\leq i\leq a+b-s+1$, consider $s$-chain $Y_i=(X_i,\ldots,X_{i+s-1})$ and event $E_{ij}=\{Y_i=Y_j\}$. Let $\eta_{ij}=\mathbb{I}(E_{ij})$ be the indicator of this event, then the number of pairs of coinciding $s$-chains in the sequence $X$ is equal to the random variable $\xi=\textstyle\sum\limits_{1\leq i<j\leq a+b-s+1}\eta_{ij}$. For any $r_a\leq a$ and $r_b\leq b$ denote by $p_{r_a,r_b}=\text{C}_{a+b-r_a-r_b}^{a-r_a}\big/\text{C}_{a+b}^a$ the probability that in sequence $X$ on fixed $r_a$ positions there are ones and on fixed $r_b$ positions are zeroes. For any $k$ such that $1\leq k\leq s-1$, we define the values $n=\lfloor s/k\rfloor$, $m=s-kn$, and the function
$$f(k)=\textstyle\sum\limits_{t_1=0}^m\sum\limits_{t_2=0}^{k-m}\text{C}_m^{t_1}\text{C}_{k-m}^{t_2}p_{t_1(n+2)+t_2(n+1),(m-t_1)(n+2)+(k-m-t_2)(n+1)}.$$
Then for the expectation of $\xi$ we obtain the formula
$$\mathsf{E}\xi=\frac{\text{C}_{a+b-2s+2}^2}{\text{C}_{a+b}^a}\textstyle\sum\limits_{r=0}^s \text{C}_s^r\text{C}_{a+b-2s}^{a-2r}+\sum\limits_{i=1}^{a+b-2s+2}\sum\limits_{k=1}^{s-1}f(k)+\sum\limits_{i=a+b-2s+3}^{a+b-s}\sum\limits_{k=1}^{a+b-s+1-i}f(k).$$
Keywords: repetitions of $s$-chains, expectation, urn scheme, exact formula.
Document Type: Article
UDC: 519.214
Language: Russian
Citation: V. I. Kruglov, “Exact formula for expectation of number of pairs of coinciding $s$-chains in a random binary sequence with fixed number of zeroes and ones”, Prikl. Diskr. Mat. Suppl., 2024, no. 17, 9–11
Citation in format AMSBIB
\Bibitem{Kru24}
\by V.~I.~Kruglov
\paper Exact formula for expectation of number of pairs of coinciding $s$-chains in a random binary sequence with fixed number of zeroes and ones
\jour Prikl. Diskr. Mat. Suppl.
\yr 2024
\issue 17
\pages 9--11
\mathnet{http://mi.mathnet.ru/pdma632}
Linking options:
  • https://www.mathnet.ru/eng/pdma632
  • https://www.mathnet.ru/eng/pdma/y2024/i17/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025