Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2024, Issue 17, Pages 12–16
DOI: https://doi.org/10.17223/2226308X/17/3
(Mi pdma633)
 

Theoretical Foundations of Applied Discrete Mathematics

The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$

S. A. Novoselov

Лаборатория математических методов защиты информации Северо-Западного центра математических исследований имени С. Ковалевской, г. Калининград
References:
DOI: https://doi.org/10.17223/2226308X/17/3
Abstract: In the paper, we explicitly describe all possible characteristic polynomials of the Frobenius endomorphism for ordinary geometrically decomposable Abelian varieties of dimension $3$ over a finite field. These polynomials encode many arithmetic properties of abelian varieties including number of points. More precisely, if $\chi_{A,{q}}(T)$ is the characteristic polynomial of the Frobenius endomorphism on $A$ over $\mathbb{F}_q$, then the number of points on $A$ is equal to $\chi_{A,{q}}(1)$.
Keywords: Abelian threefold, characteristic polynomial, point-counting, finite field.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2024-1430
Document Type: Article
UDC: 512.772
Language: Russian
Citation: S. A. Novoselov, “The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$”, Prikl. Diskr. Mat. Suppl., 2024, no. 17, 12–16
Citation in format AMSBIB
\Bibitem{Nov24}
\by S.~A.~Novoselov
\paper The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$
\jour Prikl. Diskr. Mat. Suppl.
\yr 2024
\issue 17
\pages 12--16
\mathnet{http://mi.mathnet.ru/pdma633}
Linking options:
  • https://www.mathnet.ru/eng/pdma633
  • https://www.mathnet.ru/eng/pdma/y2024/i17/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025