|
Prikladnaya Diskretnaya Matematika. Supplement, 2024, Issue 17, Pages 12–16 DOI: https://doi.org/10.17223/2226308X/17/3
(Mi pdma633)
|
|
|
|
Theoretical Foundations of Applied Discrete Mathematics
The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$
S. A. Novoselov Лаборатория математических методов защиты информации Северо-Западного центра математических исследований имени С. Ковалевской, г. Калининград
DOI:
https://doi.org/10.17223/2226308X/17/3
Abstract:
In the paper, we explicitly describe all possible characteristic polynomials of the Frobenius endomorphism for ordinary geometrically decomposable Abelian varieties of dimension $3$ over a finite field. These polynomials encode many arithmetic properties of abelian varieties including number of points. More precisely, if $\chi_{A,{q}}(T)$ is the characteristic polynomial of the Frobenius endomorphism on $A$ over $\mathbb{F}_q$, then the number of points on $A$ is equal to $\chi_{A,{q}}(1)$.
Keywords:
Abelian threefold, characteristic polynomial, point-counting, finite field.
Citation:
S. A. Novoselov, “The characteristic polynomials of geometrically split ordinary abelian varieties of dimension $3$”, Prikl. Diskr. Mat. Suppl., 2024, no. 17, 12–16
Linking options:
https://www.mathnet.ru/eng/pdma633 https://www.mathnet.ru/eng/pdma/y2024/i17/p12
|
|