Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2024, Issue 17, Pages 24–27
DOI: https://doi.org/10.17223/2226308X/17/6
(Mi pdma636)
 

Discrete Functions

On the number of the closest bent functions to some Maiorana–McFarland bent functions

D. A. Bykova, N. A. Kolomeetsb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
DOI: https://doi.org/10.17223/2226308X/17/6
Abstract: We consider the numbers of bent functions that are closest to some bent functions from the Maiorana — McFarland class $\mathcal{M}_{2n}$, specifically, the numbers near to their lower $\mathcal{l}_{2n} = 2^{2n + 1} - 2^n$ and tight upper $\mathcal{L}_{2n}$ bounds. For a bent function $f(x, y) = \langle x, \sigma(y)\rangle \oplus \varphi(y) \in \mathcal{M}_{2n}$, where $\sigma$ is a function based on the inverse function of elements of the finite field, the number of closest bent functions is calculated for identically zero $\varphi$. Moreover, it is shown that this number is less than $\mathcal{l}_{2n} + 82(2^n - 1)$ and asymptotically equals to $\mathcal{l}_{2n} + o(\mathcal{l}_{2n})$ for some $\varphi$. An explicit formula for the number of bent functions closest to $f(x, y) = \langle x, y\rangle \oplus y_1 y_2 \dots y_m$, where $3 \leq m \leq n$, has been derived. The values for $m = 3$ and $m = n$ are equal to $o(\mathcal{L}_{2n})$ and $\dfrac{1}{3}\mathcal{L}_{2n} + o(\mathcal{L}_{2n})$ respectively as $n \to \infty$. A complete classification of $\mathcal{M}_6$ using the number of closest bent functions is obtained.
Keywords: affine subspaces, bent functions, Maiorana — McFarland class, minimal distance, the closest functions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-282
Document Type: Article
UDC: 519.7
Language: Russian
Citation: D. A. Bykov, N. A. Kolomeets, “On the number of the closest bent functions to some Maiorana–McFarland bent functions”, Prikl. Diskr. Mat. Suppl., 2024, no. 17, 24–27
Citation in format AMSBIB
\Bibitem{BykKol24}
\by D.~A.~Bykov, N.~A.~Kolomeets
\paper On the number of the closest bent functions to some Maiorana--McFarland bent functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2024
\issue 17
\pages 24--27
\mathnet{http://mi.mathnet.ru/pdma636}
Linking options:
  • https://www.mathnet.ru/eng/pdma636
  • https://www.mathnet.ru/eng/pdma/y2024/i17/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025