Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2024, Issue 17, Pages 34–37
DOI: https://doi.org/10.17223/2226308X/17/8
(Mi pdma638)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete Functions

On the number of functions that break subspaces of dimension $3$ and higher

N. A. Kolomeets

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (597 kB) Citations (1)
References:
DOI: https://doi.org/10.17223/2226308X/17/8
Abstract: We consider the sets $\mathcal{P}_{n}^{k}$ consisting of invertible functions $F: \mathbb{F}_2^{n} \to \mathbb{F}_2^{n}$ such that any $U \subseteq \mathbb{F}_2^{n}$ and its image $F(U)$ are not simultaneously $k$-dimensional affine subspaces of $\mathbb{F}_2^{n}$, where $3 \leq k \leq n - 1$. We present lower bounds for the cardinalities of all such $\mathcal{P}_{n}^{k}$ and $\mathcal{P}_{n}^{k} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$ that improve the result of W. E. Clark et al., 2007 providing that these sets are not empty. We prove that almost all permutations of $\mathbb{F}_2^{n}$ belong to $\mathcal{P}_{n}^{4} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$. Asymptotic lower and upper bounds of $|\mathcal{P}_{n}^{3}|$ and $|\mathcal{P}_{n}^{3} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}|$ up to $o(2^n!)$ are obtained as well. The number of functions from $\mathcal{P}_{n}^{4} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$ that map exactly one $3$-dimensional affine subspace of $\mathbb{F}_2^{n}$ to an affine subspace is estimated.
Keywords: affine subspaces, invariant subspaces, permutations, asymptotic bounds.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0019
Document Type: Article
UDC: 519.7
Language: Russian
Citation: N. A. Kolomeets, “On the number of functions that break subspaces of dimension $3$ and higher”, Prikl. Diskr. Mat. Suppl., 2024, no. 17, 34–37
Citation in format AMSBIB
\Bibitem{Kol24}
\by N.~A.~Kolomeets
\paper On the number of functions that break subspaces of dimension $3$ and higher
\jour Prikl. Diskr. Mat. Suppl.
\yr 2024
\issue 17
\pages 34--37
\mathnet{http://mi.mathnet.ru/pdma638}
Linking options:
  • https://www.mathnet.ru/eng/pdma638
  • https://www.mathnet.ru/eng/pdma/y2024/i17/p34
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025