Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2025, Issue 18, Pages 23–26
DOI: https://doi.org/10.17223/2226308X/18/4
(Mi pdma676)
 

Theoretical Foundations of Applied Discrete Mathematics

Some periodic and statistical properties of piecewise polynomial sequences over primary residue rings

A. R. Vasin, T. I. Lipina
References:
DOI: https://doi.org/10.17223/2226308X/18/4
Abstract: We study periodic and statistical properties of piecewise polynomial sequences (PP-sequences) over the primary residue ring $R=\mathbb{Z}_{p^n}$ modulo $p^n$. For an element $x \in R$ in the form $x = p^l \hat x$, $\hat x \in R^*$, $0 \le l \le n$, and a polynomial $F(x) = f_0 + f_1 x + \ldots + f_d x^d \in R[x]$ define a piecewise polynomial function $\phi_F \colon R\to R$ as $\phi_F(x) = \phi_F(p^l\hat{x}) = f_0 + p^l(f_1 \hat x + \ldots+ f_d \hat x^d)$, and a PP-sequence as $x_0,x_1 = \phi_F(x_0),\ldots,x_{m+1} = \phi_F(x_m),\ldots$ for some $x_0 \in R$. In the binary case $p=2$, we obtain a criterion for the transitivity of piecewise polynomial transformations in terms of the generating polynomial coefficients: a PP-function $\phi_F$ is transitive over $\mathbb{Z}_{2^n}$ for any $n \ge 1$, if and only if
$$f_0 \equiv 1 \pmod 2,\ f_1+f_3+\ldots+f_{d'} \equiv 1 \pmod 4,\ f_2+f_4+\ldots+f_{2\lfloor d/2 \rfloor} \equiv 0 \pmod 4,$$
where $d' = d$ if $d$ is odd, and $d'=d-1$ otherwise. For $p>2$, we derive nontrivial bounds for the discrepancy of normalized PP-sequence segments. Let $\{x_i\}_{i=0}^\infty$ be a PP-sequence of period $q$ over $R=\mathbb{Z}_{q}$, where $q = p^n$, $p > 2$, consider the sequence $P = \{y_i\}_{i=0}^\infty \in [0,1)^\infty$, where $y_i = x_i / q$. Let $V(R) = \dfrac{4}{\pi^2} n\ln p + \dfrac{4}{5}$. For $d \ge 2$, $(d,p)=1$, $1 \le l \le q$, the discrepancy $D_l$ of $P$ is bounded as
$$D_l(P) < 1/q + 3 V(R) p^{-1/(2s)} l^{-1/2} q^{1/2}, \text{where }s=d^{\sqrt{3p/2}+1}.$$
Also, we derive nontrivial estimates for the autocorrelation coefficients of PP-sequence segments of length $p^n$. Consider the autocorrelation coefficients $A_{\phi_F}(l,s,g)$ of a PP-sequence $\{x_i\}_{i=0}^\infty$ of period $q$ over $R=\mathbb{Z}_{q}$, $q=p^n$, $p>2$, which are defined as $A_{\phi_F}(l,s,g) = \sum\limits_{i=0}^{l-1} e^{2 \pi i g (x_i - x_{i+s})/q}$. For $d \ge 2$, $(d,p)=1$, and $h = q/(q, g)$, we have
$$|A_{\phi_F}(q,s,g)| < 4{,}41 h^{- 1/d^s}q + 2sp^{-1}q.$$
Keywords: piecewise polynomial sequences, transitivity, discrepancy, autocorrelation coefficients.
Document Type: Article
UDC: 512.547+519.714
Language: Russian
Citation: A. R. Vasin, T. I. Lipina, “Some periodic and statistical properties of piecewise polynomial sequences over primary residue rings”, Prikl. Diskr. Mat. Suppl., 2025, no. 18, 23–26
Citation in format AMSBIB
\Bibitem{VasLip25}
\by A.~R.~Vasin, T.~I.~Lipina
\paper Some periodic and statistical properties of piecewise polynomial sequences over primary residue rings
\jour Prikl. Diskr. Mat. Suppl.
\yr 2025
\issue 18
\pages 23--26
\mathnet{http://mi.mathnet.ru/pdma676}
Linking options:
  • https://www.mathnet.ru/eng/pdma676
  • https://www.mathnet.ru/eng/pdma/y2025/i18/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:53
    Full-text PDF :22
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025