Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2025, Issue 18, Pages 35–38
DOI: https://doi.org/10.17223/2226308X/18/7
(Mi pdma679)
 

Theoretical Foundations of Applied Discrete Mathematics

On the probability of incompleteness of the row rank of a random matrix consisting of independent rows with given numbers of nonzero elements

V. I. Kruglov
References:
DOI: https://doi.org/10.17223/2226308X/18/7
Abstract: We consider random matrices over the rings $\mathbb{Z}_4$ or $\mathbb{Z}_8$ consisting of rows $b_1,\ldots,b_n$. Each row is chosen independently and with equal probability from all rows with weights $s_1,\ldots,s_n$ respectively. We propose upper bounds for the probability that such a random matrix has incomplete row rank. For such matrices $B$ over $\mathbb{Z}_4$ of size $n\times m$, where $n\leq m$, this probability may be bounded by the inequality
\begin{gather*} \Pr[{\rm rank}(B) < n ]\leq \frac{1}{4^m}\textstyle\sum\limits_{r=1}^n \sum\limits_{1\le i_1<\ldots<i_r\le n}\sum\limits_{a_{i_1},\ldots,a_{i_r}=1}^3\sum\limits_{z_1,\ldots,z_m=\pm 1,\pm i}\prod\limits_{h=1}^r \dfrac{1}{\text{C}_m^{s_{i_h}}}\times\\\times\textstyle\sum\limits_{1\leq k_1<\ldots<k_{s_{i_h}}\leq m}L_{a_{i_h}}(z_{k_1},4)\cdot\ldots\cdot L_{a_{i_h}}(z_{k_{s_{i_h}}},4), \end{gather*}
where $L_1(z,4)=L_3(z,4)=(z^3+z^2+z)/{3}$, $L_2(z,4)={3}z^2/2+{1}/{3}$. For matrices over $\mathbb{Z}_8$ we obtain a similar upper bound \allowdisplaybreaks
\begin{gather*} \Pr[{\rm rank}(B) < n] \leq \frac{1}{8^m}\textstyle\sum\limits_{r=1}^n \sum\limits_{1\le i_1<\ldots<i_r\le n}\sum\limits_{a_{i_1},\ldots,a_{i_r}=1}^7\sum\limits_{z_1,\ldots,z_m=\exp(\pi li/4)\atop l=1,\ldots,8}\prod\limits_{h=1}^r \dfrac{1}{\text{C}_m^{s_{i_h}}}\times\\\times\textstyle\sum\limits_{1\leq k_1<\ldots<k_{s_{i_h}}\leq m}L_{a_{i_h}}(z_{k_1},8)\cdot\ldots\cdot L_{a_{i_h}}(z_{k_{s_{i_h}}},8), \end{gather*}
where $L_1(z,8)=L_3(z,8)=L_5(z,8)=L_7(z,8)=\dfrac{z^7+\ldots+z^2+z}{7}$, $L_4(z,8)=\dfrac{4}{7}z^4+\dfrac{3}{7}$, and $L_2(z,8)=L_6(z,8)=\dfrac{2}{7}z^6+\dfrac{2}{7}z^4+\dfrac{2}{7}z^2+\dfrac{1}{7}$.
Keywords: matrices over finite rings, random matrices, matrix rank.
Document Type: Article
UDC: 519.213
Language: Russian
Citation: V. I. Kruglov, “On the probability of incompleteness of the row rank of a random matrix consisting of independent rows with given numbers of nonzero elements”, Prikl. Diskr. Mat. Suppl., 2025, no. 18, 35–38
Citation in format AMSBIB
\Bibitem{Kru25}
\by V.~I.~Kruglov
\paper On the probability of incompleteness of the row rank of a random matrix consisting of independent rows with given numbers of nonzero elements
\jour Prikl. Diskr. Mat. Suppl.
\yr 2025
\issue 18
\pages 35--38
\mathnet{http://mi.mathnet.ru/pdma679}
Linking options:
  • https://www.mathnet.ru/eng/pdma679
  • https://www.mathnet.ru/eng/pdma/y2025/i18/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :25
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025