Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2025, Issue 18, Pages 234–237
DOI: https://doi.org/10.17223/2226308X/18/47
(Mi pdma719)
 

Applied Theory of Coding and Automata

On calculation of error-correcting pairs for PELP algorithm for algebraic-geometry codes

A. A. Kuninets, E. S. Malygina
References:
DOI: https://doi.org/10.17223/2226308X/18/47
Abstract: This work explores the construction of $2$-power error locating pairs ($2$-PELP) in the context of power decoding for algebraic-geometric codes. Such a pair, consisting of codes related through the component-wise Schur product, enables unique decoding when the error weight exceeds half of the code's designed distance. So for the algebraic-geometric code $\mathcal{C}_{\mathcal{L}}(D,G)$ of the length $n$ associated with a functional field $F/\mathbb{F}_q$ of genus $g$ the ($2$-PELP) with number of errors $t \leq 2n+2g-2\deg(F)-3\deg(G)-2$ is $(\mathcal{C}_\mathcal{L}(D,F), \mathcal{C}_\mathcal{L}(D,G+F)^\bot)$, and with number of errors $t \leq 2\deg(F)-3\deg(G)+2-2g$ is $(\mathcal{C}_\mathcal{L}(D,F)^\bot,\mathcal{C}_\mathcal{L}(D,F-G))$. For the dual code $\mathcal{C}_{\mathcal{L}}(D,G)^\bot$, the ($2$-PELP) with number of errors $t \leq 3\deg(G)-2\deg(F)+4-4g-n$ is $(\mathcal{C}_\mathcal{L}(D,F),\mathcal{C}_\mathcal{L}(D,G-F))$. Furthermore, the constraints on the code divisors have been refined, and new conditions ensuring the existence of such pairs have been established.
Keywords: function field, algebraic geometry code, error-correcting pair.
Funding agency Grant number
HSE Basic Research Program
Document Type: Article
UDC: 519.725
Language: Russian
Citation: A. A. Kuninets, E. S. Malygina, “On calculation of error-correcting pairs for PELP algorithm for algebraic-geometry codes”, Prikl. Diskr. Mat. Suppl., 2025, no. 18, 234–237
Citation in format AMSBIB
\Bibitem{KunMal25}
\by A.~A.~Kuninets, E.~S.~Malygina
\paper On calculation of error-correcting pairs for PELP algorithm for algebraic-geometry codes
\jour Prikl. Diskr. Mat. Suppl.
\yr 2025
\issue 18
\pages 234--237
\mathnet{http://mi.mathnet.ru/pdma719}
Linking options:
  • https://www.mathnet.ru/eng/pdma719
  • https://www.mathnet.ru/eng/pdma/y2025/i18/p234
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:55
    Full-text PDF :25
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025