Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2025, Issue 18, Pages 237–240
DOI: https://doi.org/10.17223/2226308X/18/48
(Mi pdma720)
 

Applied Theory of Coding and Automata

About one code construction based on an algebra-geometric code

E. S. Malygina, A. A. Nikolaev
References:
DOI: https://doi.org/10.17223/2226308X/18/48
Abstract: In the paper, we have considered the application of the Plotkin construction to codes associated with function fields of algebraic curves over finite fields. The main focus has been on analyzing the parameters of the new code $\mathcal{C}$, which was obtained by combining two algebraic geometry codes $\mathcal{C}_1$ and $\mathcal{C}_2$. An explicit construction of both the generator and parity-check matrices is presented, and formulas for the minimum distance and dimension of the resulting code are derived. Moreover, we have discussed the construction of an error-correcting pair $(\mathcal{A}, \mathcal{B})$ for the code $\mathcal{C}$. This allows the use of efficient algebraic decoding methods when working with this class of codes. In particular, if error-correcting pairs exist for the original codes $\mathcal{C}_1$ and $\mathcal{C}_2$, then a corresponding pair can be explicitly constructed for the combined code $\mathcal{C}$, preserving the geometric structure and enabling polynomial-time decoding algorithms. This approach opens up possibilities for building longer codes with controlled parameters, while maintaining good error-correcting capabilities and allowing for practical implementation in coding theory and cryptography.
Keywords: function field, algebraic geometry code, error-correcting pair, Plotkin construction.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation ,075-15-2025-349
Document Type: Article
UDC: 519.725
Language: Russian
Citation: E. S. Malygina, A. A. Nikolaev, “About one code construction based on an algebra-geometric code”, Prikl. Diskr. Mat. Suppl., 2025, no. 18, 237–240
Citation in format AMSBIB
\Bibitem{MalNik25}
\by E.~S.~Malygina, A.~A.~Nikolaev
\paper About one code construction based on an algebra-geometric code
\jour Prikl. Diskr. Mat. Suppl.
\yr 2025
\issue 18
\pages 237--240
\mathnet{http://mi.mathnet.ru/pdma720}
Linking options:
  • https://www.mathnet.ru/eng/pdma720
  • https://www.mathnet.ru/eng/pdma/y2025/i18/p237
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:49
    Full-text PDF :17
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025