Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2025, Issue 18, Page 240
DOI: https://doi.org/10.17223/2226308X/18/49
(Mi pdma721)
 

Applied Theory of Coding and Automata

On the properties of the output sequence of a maximum period finite-state generator

E. S. Prudnikov
References:
DOI: https://doi.org/10.17223/2226308X/18/49
Abstract: Some properties of the output sequence of a finite-state generator $G=A_1\cdot A_2$, where $A_1=(\mathbb{F}_2^n,\mathbb{F}_2, g_1, f_1)$ (it is autonomous), $A_2 = (\mathbb{F}_2,\mathbb{F}_2^m,\mathbb{F}_2,g_2,f_2)$, $n,m\geq 1$, having the maximum period equal to $2^{n+m}$, are described. Let $z=z(1)\ldots z(2^{n+m})$ be the initial segment of the generator output sequence, $N=\text{wt}(z)$, and $i_1,\ldots,i_N$ — numbers of positions where $z$ contains ones. Then: 1) if $m\geq n$, then there exists a generator $G$ that outputs a sequence $z$ of any weight $N$, $0\leq N\leq 2^{n+m}$; 2) if, for given $m, n$ and any $N$, $0\leq N\leq 2^{n+m}$, there exists a generator $G$ that outputs a sequence $z$ of weight $N$, then $m\geq n-1$; 3) if $N=2^l$, $0<l<n$, then $i_1\equiv i_2\equiv\ldots\equiv i_N\pmod{2^n}$; 4) if $N<2^n$ and $N$ is prime, then either $i_1\equiv\ldots\equiv i_N\pmod{2^n}$, or all values $i_1,\ldots,i_N$ are pairwise distinct modulo $2^n$.
Keywords: finite-state generator, maximum period, sequence weight.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: E. S. Prudnikov, “On the properties of the output sequence of a maximum period finite-state generator”, Prikl. Diskr. Mat. Suppl., 2025, no. 18, 240
Citation in format AMSBIB
\Bibitem{Pru25}
\by E.~S.~Prudnikov
\paper On the properties of the output sequence of a maximum period finite-state generator
\jour Prikl. Diskr. Mat. Suppl.
\yr 2025
\issue 18
\pages 240
\mathnet{http://mi.mathnet.ru/pdma721}
Linking options:
  • https://www.mathnet.ru/eng/pdma721
  • https://www.mathnet.ru/eng/pdma/y2025/i18/p240
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :12
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025