Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Prokopenko, Evgenii Igorevich

Statistics Math-Net.Ru
Total publications: 14
Scientific articles: 14
Presentations: 5

Number of views:
This page:644
Abstract pages:3223
Full texts:968
References:330
E-mail:

https://www.mathnet.ru/eng/person113623
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2024
1. A. A. Borovkov, E. I. Prokopenko, “On limit theorems for the distribution of the maximal element in a sequence of random variables”, Teor. Veroyatnost. i Primenen., 69:2 (2024),  233–255  mathnet; Theory Probab. Appl., 69:2 (2024), 186–204
2022
2. A. V. Logachov, A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models”, Probl. Peredachi Inf., 58:2 (2022),  48–65  mathnet
2021
3. A. I. Sakhanenko, V. I. Wachtel, E. I. Prokopenko, A. D. Shelepova, “On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process”, Sib. Èlektron. Mat. Izv., 18:1 (2021),  9–26  mathnet 1
2020
4. A. A. Mogul'skii, E. I. Prokopenko, “Принцип больших уклонений для конечномерных распределений многомерных обобщенных процессов восстановления”, Mat. Tr., 23:2 (2020),  148–176  mathnet 5
2019
5. A. A. Mogul'skiĭ, E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Mat. Tr., 22:2 (2019),  106–133  mathnet; Siberian Adv. Math., 30:4 (2020), 284–302  scopus 9
6. A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for multidimensional second compound renewal processes in the phase space”, Sib. Èlektron. Mat. Izv., 16 (2019),  1478–1492  mathnet 8
7. A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in the phase space”, Sib. Èlektron. Mat. Izv., 16 (2019),  1464–1477  mathnet 9
8. A. A. Mogulskii, E. I. Prokopenko, “The rate function and the fundamental function for multidimensional compound renewal process”, Sib. Èlektron. Mat. Izv., 16 (2019),  1449–1463  mathnet 9
9. A. A. Borovkov, A. A. Mogul'skii, E. I. Prokopenko, “Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process”, Teor. Veroyatnost. i Primenen., 64:4 (2019),  625–641  mathnet  mathscinet  elib; Theory Probab. Appl., 64:4 (2020), 499–512  isi  scopus 8
2018
10. A. A. Mogulskii, E. I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Sib. Èlektron. Mat. Izv., 15 (2018),  528–553  mathnet 11
11. A. A. Mogulskii, E. I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II”, Sib. Èlektron. Mat. Izv., 15 (2018),  503–527  mathnet 10
12. A. A. Mogulskii, E. I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Sib. Èlektron. Mat. Izv., 15 (2018),  475–502  mathnet 11
13. M. G. Chebunin, E. I. Prokopenko, A. S. Tarasenko, “Spatially decentralized protocols in random multiple access networks”, Sib. Èlektron. Mat. Izv., 15 (2018),  135–152  mathnet
2015
14. A. V. Logachov, E. I. Prokopenko, “Large deviation principle for integral functionals of a Markov process”, Sib. Èlektron. Mat. Izv., 12 (2015),  639–650  mathnet

Presentations in Math-Net.Ru
1. Подход Multi-Normex для аппроксимации суммы случайных векторов с тяжелыми хвостами
E. I. Prokopenko

November 10, 2022 17:20   
2. Asymptotics for probabilities of large deviations for a compound renewal process under Cramer condition
E. I. Prokopenko
School and Workshop on Random Point Processes
November 1, 2022 17:45   
3. Multi-Normex approach for evaluating the sum of heavy tailed random vectors
Evgeny Prokopenko
Borovkov Meeting
August 26, 2022 12:45
4. Statistical hype at the end of the 20th century
E. I. Prokopenko
Probability and theoretical statistics
March 29, 2022 14:00
5. Интегро-локальные предельные теоремы для многомерных процессов восстановления при моментном условии Крамера
E. I. Prokopenko
Seminar on Probability Theory and Mathematical Statistics
June 8, 2018 18:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024