|
|
|
Publications in Math-Net.Ru |
Citations |
|
2025 |
| 1. |
Andrii Liashyk, Stanislav Pakuliak, Etic Ragoucy, “Rectangular Recurrence Relations in $\mathfrak{gl}_{n}$ and $\mathfrak{o}_{2n+1}$ Invariant Integrable Models”, SIGMA, 21 (2025), 078, 28 pp. |
|
2021 |
| 2. |
A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable
models”, TMF, 206:1 (2021), 23–46 ; Theoret. and Math. Phys., 206:1 (2021), 19–39 |
7
|
|
2020 |
| 3. |
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors”, J. Stat. Mech., 2020, 93104, 31 pp. |
7
|
| 4. |
Andrii N. Liashyk, Stanislav Z. Pakuliak, “Gauss Coordinates vs Currents for the Yangian Doubles of the Classical Types”, SIGMA, 16 (2020), 120, 23 pp. |
4
|
|
2019 |
| 5. |
A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors”, J. Stat. Mech., 2019 (2019), 44001, 24 pp. |
11
|
| 6. |
A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors for orthogonal integrable models”, TMF, 201:2 (2019), 153–174 ; Theoret. and Math. Phys., 201:2 (2019), 1545–1564 |
8
|
|
2018 |
| 7. |
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 926 (2018), 256–278 |
14
|
| 8. |
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018), 6–30 |
13
|
|
2017 |
| 9. |
Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$”, J. Integrab. Syst., 2 (2017), 1–31 |
11
|
| 10. |
A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 34004, 22 pp. |
18
|
| 11. |
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 923 (2017), 277–311 |
22
|
| 12. |
A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Uspekhi Mat. Nauk, 72:1(433) (2017), 37–106 ; Russian Math. Surveys, 72:1 (2017), 33–99 |
28
|
|
2016 |
| 13. |
A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005, 28 pp. |
12
|
| 14. |
A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927 |
14
|
| 15. |
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp. |
14
|
|
2015 |
| 16. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001, 21 pp. |
20
|
| 17. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481 |
23
|
| 18. |
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064, 18 pp. |
23
|
| 19. |
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063, 20 pp. |
19
|
|
2014 |
| 20. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models based on $U_q(\hat{\mathfrak{gl}}_N)$”, J. Phys. A, 47:10 (2014), 105202, 16 pp. |
11
|
| 21. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix”, Nuclear Phys. B, 881 (2014), 343–368 |
28
|
| 22. |
S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix”, TMF, 181:3 (2014), 515–537 ; Theoret. and Math. Phys., 181:3 (2014), 1566–1584 |
17
|
| 23. |
S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case”, TMF, 180:1 (2014), 51–71 ; Theoret. and Math. Phys., 180:1 (2014), 795–814 |
8
|
| 24. |
S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient”, TMF, 178:3 (2014), 363–389 ; Theoret. and Math. Phys., 178:3 (2014), 314–335 |
10
|
|
2013 |
| 25. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in $SU(3)$-invariant integrable models”, J. Stat. Mech., 2013:4 (2013), 4033, 16 pp. |
26
|
| 26. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of $GL(3)$-invariant integrable models”, J. Stat. Mech., 2013:2 (2013), 2020, 24 pp. |
25
|
| 27. |
Samuel Belliard, Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe Vectors of Quantum Integrable Models with $\mathrm{GL}(3)$ Trigonometric $R$-Matrix”, SIGMA, 9 (2013), 058, 23 pp. |
16
|
|
2012 |
| 28. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Highest coefficient of scalar products in $SU(3)$-invariant integrable models”, J. Stat. Mech., 2012:9 (2012), 9003, 17 pp. |
17
|
| 29. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “The algebraic Bethe ansatz for scalar products in $SU(3)$-invariant integrable models”, J. Stat. Mech., 2012 (2012), 10017, 25 pp. |
32
|
|
2010 |
| 30. |
Samuel Belliard, Stanislav Pakuliak, Eric Ragoucy, “Universal Bethe Ansatz and Scalar Products of Bethe Vectors”, SIGMA, 6 (2010), 094, 22 pp. |
17
|
|
2009 |
| 31. |
A. F. Oskin, S. Z. Pakulyak, A. V. Silantiev, “On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, Algebra i Analiz, 21:4 (2009), 196–240 ; St. Petersburg Math. J., 21:4 (2010), 651–680 |
18
|
|
2008 |
| 32. |
Sergey Khoroshkin, Stanislav Pakuliak, “Generating Series for Nested Bethe Vectors”, SIGMA, 4 (2008), 081, 23 pp. |
6
|
|
2007 |
| 33. |
S. Z. Pakulyak, S. M. Khoroshkin, “Projection method and a universal weight function for the quantum
affine algebra $U_q(\widehat{\mathfrak{sl}}_{N+1})$”, TMF, 150:2 (2007), 286–303 ; Theoret. and Math. Phys., 150:2 (2007), 244–258 |
1
|
|
2005 |
| 34. |
S. Z. Pakuliak, S. M. Khoroshkin, “Weight Function for the Quantum Affine Algebra $U_{q}(\widehat{\frak{sl}}_3)$”, TMF, 145:1 (2005), 3–34 ; Theoret. and Math. Phys., 145:1 (2005), 1373–1399 |
22
|
|
2003 |
| 35. |
S. Z. Pakulyak, S. M. Sergeev, “Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model”, TMF, 136:1 (2003), 30–51 ; Theoret. and Math. Phys., 136:1 (2003), 917–935 |
4
|
|
2000 |
| 36. |
J. Ding, S. Z. Pakulyak, S. M. Khoroshkin, “Factorization of the universal $\mathcal R $-matrix for ${U_q(\widehat{sl}_2)} $”, TMF, 124:2 (2000), 179–214 ; Theoret. and Math. Phys., 124:2 (2000), 1007–1037 |
12
|
|
1997 |
| 37. |
D. R. Lebedev, S. Z. Pakulyak, S. M. Khoroshkin, “Zamolodchikov–Faddeev algebras for Yangian doubles at level 1”, TMF, 110:1 (1997), 25–45 ; Theoret. and Math. Phys., 110:1 (1997), 18–34 |
|
1995 |
| 38. |
S. Z. Pakulyak, “On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$”, TMF, 104:1 (1995), 64–77 ; Theoret. and Math. Phys., 104:1 (1995), 810–822 |
1
|
| 39. |
P. I. Holod, S. Z. Pakulyak, “The dressing techniques for intermediate hierarchies”, TMF, 103:3 (1995), 422–436 ; Theoret. and Math. Phys., 103:3 (1995), 668–680 |
1
|
|
1993 |
| 40. |
A. D. Mironov, S. Z. Pakulyak, “On the continuum limit of the conformal matrix models”, TMF, 95:2 (1993), 317–340 ; Theoret. and Math. Phys., 95:2 (1993), 604–625 |
20
|
|
| Presentations in Math-Net.Ru |
|
|
| Organisations |
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
- Joint Institute for Nuclear Research, Dubna, Moscow region
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
- University of Zaragoza
- Max Planck Institute for Mathematics, Bonn
- State Scientific Center of the Russian Federation - Institute for Theoretical and Experimental Physics, Moscow
- Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Region
|
|