Afanasev V. I., Sluchainye bluzhdaniya i vetvyaschiesya protsessy, Lektsionnye kursy NOTs, 6, MIAN, 2007
Afanasev V. I., “Zakon arksinusa dlya vetvyaschikhsya protsessov v sluchainoi srede i protsessov Galtona–Vatsona”, Teoriya veroyatnostei i ee primeneniya, 51:3 (2006), 449–464
Afanasev V. I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskretnaya matematika, 13:1 (2001), 132–157
V. I. Afanasyev, “A limit theorem on convergence to the local time of Brownian bridge”, Mat. Zametki, 116:5 (2024) (to appear)
2023
3.
V. I. Afanasyev, “Local invariance principle for a random walk with zero drift”, J. Math. Sci. (N.Y.), 266 (2023), 850–868
2024
4.
V. I. Afanasyev, “Weakly supercritical branching process in random environment dying at a distant moment”, Theory Probab. Appl., 68:4 (2024), 537–558
2023
5.
V. I. Afanasev, “Slabo nadkriticheskii vetvyaschiisya protsess v sluchainoi srede pri uslovii otdalennogo vyrozhdeniya”, Tezisy dokladov, predstavlennykh na Vosmoi Mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primeneniya, 68:4 (2023), 834–877
2022
6.
V. I. Afanasyev, “On the Local Time of a Stopped Random Walk Attaining a High Level”, Proc. Steklov Inst. Math., 316 (2022), 5–25
2024
7.
V. I. Afanasyev, “Weakly supercritical branching process in unfavourable environment”, Discrete Math. Appl., 34:1 (2024), 1–13
2022
8.
V. I. Afanasyev, “O lokalnykh vremenakh uslovnykh sluchainykh bluzhdanii”, Tezisy dokladov, predstavlennykh na Sedmoi Mezhdunarodnoi konferentsii po stokhasticheskim metodam. 1, Teoriya veroyatnostei i ee primeneniya, 67:4 (2022), 819-836
V. I. Afanasev, “Uslovnye predelnye teoremy dlya sluchainykh bluzhdanii i ikh lokalnykh vremen”, Vtoraya konferentsiya Matematicheskikh tsentrov Rossii: sbornik tezisov (7-11 noyabrya 2022 g.), izdatelstvo Moskovskogo universiteta, M., 2022, 24–26
10.
Vetvyaschiesya protsessy i smezhnye voprosy, Sbornik statei. K 75-letiyu so dnya rozhdeniya Andreya Mikhailovicha Zubkova i 70-letiyu so dnya rozhdeniya Vladimira Alekseevicha Vatutina, Trudy MIAN, 316, ed. V. I. Afanasev, V. G. Mikhailov, E. E. Dyakonova, MIAN, M., 2022 , 390 pp.
11.
V. I. Afanasyev, V. G. Mikhailov, E. E. Dyakonova, “Andrei Mikhailovich Zubkov: On the occasion of his 75th birthday”, Proc. Steklov Inst. Math., 316 (2022), 1–2
12.
V. I. Afanasyev, V. G. Mikhailov, E. E. Dyakonova, “Vladimir Alekseevich Vatutin: On the occasion of his 70th birthday”, Proc. Steklov Inst. Math., 316 (2022), 3–4
2021
13.
V. I. Afanasyev, “Local time of a stopped random walk and a Galton-Watson branching process”, The 5th International Workshop on Branching Processes and their Applications. Book of Abstracts (Badajoz, Spain, April 6-22, 2021), eds. Miguel Gonzalez and Ines M. del Puerto, University of Extremadura, Badajoz, Spain, 2021, 30
14.
V. I. Afanasyev, “A critical branching process with immigration in random environment”, Stoch. Proc. Appl., 139 (2021), 110-138
V. I. Afanasyev, “A conditional functional limit theorem for a decomposable branching process”, Operator Theory and Harmonic Analysis. OTHA 2020, Part II – Probability-Analytical Models, Methods and Applications, Springer Proc. Math. Statist., 358, Springer, 2021, 1–18
16.
V. I. Afanasyev, “Limit theorems for a strongly supercritical branching process with immigration in random environment”, Stoch. Qual. Control, 36:2 (2021), 129-143
V. I. Afanasyev, “On the Times of Attaining High Levels by a Random Walk in a Random Environment”, Theory Probab. Appl., 65:3 (2020), 359–374
18.
V. I. Afanasev, “Funktsionalnye predelnye teoremy dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Tezisy dokladov, predstavlennykh na Chetvertoi mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primenenie, 65:1 (2020), 151-201
V. I. Afanasyev, “A critical branching process with immigration in random environment”, Proceedings of the 5th International Conference on Stochastic Methods (Russia, Moscow, November 23-27, 2020), Peoples Friendship University of Russia, Moscow, 2020, 11-15
2019
20.
V. I. Afanasev, “Granichnye zadachi dlya sluchainogo bluzhdaniya v sluchainoi srede”, Tezisy dokladov, predstavlennykh na Tretei Mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primenenie, 64:1 (2019), 151-204
V. I. Afanasyev, “Two-sided problem for the random walk with bounded maximal increment”, Discrete Math. Appl., 31:2 (2021), 79–89
2020
22.
V. I. Afanasyev, “Functional limit theorem for the local time of stopped random walk”, Discrete Math. Appl., 30:3 (2020), 147–157
2018
23.
V. I. Afanasyev, “A Functional Limit Theorem for Decomposable Branching Processes with Two Particle Types”, Math. Notes, 103:3 (2018), 337–347
2019
24.
V. I. Afanasyev, “Two-boundary problem for a random walk in a random environment”, Theory Probab. Appl., 63:3 (2019), 339–350
2017
25.
V. I. Afanasyev, Review of Applied and Industrial Mathematics, 24:4 (2017), 312–313
2019
26.
V. I. Afanasyev, “Convergence to the local time of Brownian meander”, Discrete Math. Appl., 29:3 (2019), 149–158
2017
27.
V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in a random environment”, Theory Probab. Appl., 61:2 (2017), 178–207
2016
28.
V. I. Afanasyev, “On a decomposable branching process with two types of particles”, Proc. Steklov Inst. Math., 294 (2016), 1–12
2017
29.
V. I. Afanasyev, “Functional limit theorem for a stopped random walk attaining a high level”, Discrete Math. Appl., 27:5 (2017), 269–276
2018
30.
V. I. Afanasyev, “On the non-recurrent random walk in a random environment”, Discrete Math. Appl., 28:3 (2018), 139–156
2016
31.
V. I. Afanasev, “About time of reaching a high level by a random walk in a random environment”, Modern problems in theoretical and applied probability (Sovremennye problemy teoreticheskoi i prikladnoi veroyatnosti): sbornik materialov VI Mezhdunarodnoi konferentsii (Novosibirsk, 22–25 avgusta 2016 g.), eds. Tarasenko A.S., Redaktsionno-izdatelskii tsentr NGU, 630090, Novosibirsk-90, ul. Pirogova, 2, 2016, 11–12
32.
V. I. Afanasyev, Review of Applied and Industrial Mathematics, 23:4 (2016), 326–327
33.
V. I. Afanasyev, “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl., 26:2 (2016), 71–88
2015
34.
V. I. Afanasyev, “On subcritical branching processes in random environment”, III Workshop on Branching Processes and their Applications. Book of Abstracts (Badajoz, Spain, April 7-10, 2015), eds. Miguel Gonzalez, University of Extremadura, Badajoz, Spain, 2015, 38–38
2014
35.
V. I. Afanasyev, Ch. Böinghoff, G. Kersting, and V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50:2 (2014), 602–627 , arXiv: 1108.2127
V. I. Afanasyev, “Functional limit theorems for high-level subcritical branching processes in random environment”, Discrete Math. Appl., 24:5 (2014), 257–272
37.
V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in random environment”, XVI-th International Summer Conference on Probability and Statistics (ISCPS-2014). Abstracts (Pomorie, Bulgaria, 21–28 June 2014), eds. N. M. Yanev, Bulgarian Academy of Sciences, Sofia, 2014, 4–5
38.
V. I. Afanasyev, “High level subcritical branching processes in a random environment”, XXXII International Seminar on Stability Problems for Stochastic Models. Book of Abstracts (Trondheim, Norway, 16–21 June 2014), eds. V. Yu. Korolev and S.Ya. Shorgin, Institute of informatics problems, RAS, Moscow, 2014, 5–6
39.
V. I. Afanasyev, Review of Applied and Industrial Mathematics, 21:4 (2014), 327–328
2013
40.
V. I. Afanasyev, “High Level Subcritical Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 4–14
41.
V. I. Afanasyev, “Branching processes with immigration in random environment”, Abstracts of the 29-th European Meeting of Statisticians (Budapest, Hungary, 20–25 July 2013), eds. Laszlo Markus and Vilmos Prokaj, Haxel, 2013, 25–26
42.
V. I. Afanasyev, “Random walk in random environment conditioned to be positive: limit theorem for maximum”, 7-th International Workshop on Simulation. Book of abstracts (Rimini, Italy, 21–25 May 2013), Quaderni di Dipartimento. Serie Ricerche, 3, eds. Mariagiulia Matteucci, University of Bologna, Bologna, Italy, 2013, 25-26
2014
43.
V. I. Afanasyev, “Conditional limit theorem for maximum of random walk in a random environment”, Theory Probab. Appl., 58:4 (2014), 525–545
2012
44.
V. I. Afanasyev, C. Boinghoff, G. Kersting, V. A. Vatutin,, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732
V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567
2011
46.
V. I. Afanasev, “Vetvyaschiisya protsess v sluchainoi srede, nachinayuschiisya s bolshogo chisla chastits”, Dvenadtsatyi Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike (Sochi-Adler, 1–8 oktyabrya 2011 g.), Obozrenie prikl. i promyshl. matem., 18, no. 3, 2011, 410–410
47.
V. I. Afanasyev, “Invariance principle for the critical Galton–Watson process attaining a high level”, Theory Probab. Appl., 55:4 (2011), 559–574
48.
V. I. Afanasyev, “Brownian high jump”, Theory Probab. Appl., 55:2 (2011), 183–197
2010
49.
V. I. Afanasyev, “New invariance principles for critical branching process in random environment”, Advances in data analysis, Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2010, 105–115
V. I. Afanasyev, “Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level”, Theory Probab. Appl., 54:1 (2010), 1–13
2008
51.
V. I. Afanasev, “O globalnykh kharakteristikakh kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Devyatyi Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike (Kislovodsk, 01–08 maya 2008 g.), Obozrenie prikl. i promyshl. matem., 15, no. 4, 2008, 692–693
2007
52.
V. I. Afanasyev, Random walks and branching processes, Lekts. Kursy NOC, 6, Steklov Math. Inst., RAS, Moscow, 2007 , 188 pp.
2008
53.
V. I. Afanasyev, “Galton–Watson processes attaining a high level”, Theory Probab. Appl., 52:3 (2008), 509–515
2007
54.
V. I. Afanasev, A. A. Bobodzhanov, V. G. Krupin, Kurs vysshei matematiki. Teoriya veroyatnostei. Lektsii i praktikum, eds. I. M. Petrushko, Lan, Sankt-Peterburg, Moskva, Krasnodar, 2007 , 352 pp.
55.
V. I. Afanasyev, “Arcsine law for branching processes in a random environment and Galton–Watson processes”, Theory Probab. Appl., 51:3 (2007), 401–414
2005
56.
V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676
V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673
V. I. Afanasyev, “On a conditional invariance principle for a critical Galton–Watson branching process”, Discrete Math. Appl., 15:1 (2005), 17–32
2004
59.
V. I. Afanasyev, “On the ratio between the maximal and total numbers of individuals in a critical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 384–399
2003
60.
V. I. Afanasev, “Ob usloviyakh sovpadeniya mnozhestv nevyrozhdeniya i estestvennogo rosta dlya vetvyaschikhsya protsessov v izmenyayuscheisya i sluchainoi sredakh”, Vestnik MEI, 2003, no. 6, 94–105
2001
61.
V. I. Afanasyev, “On the maximum of a subcritical branching process in a random environment”, Stochastic Process. Appl., 93:1 (2001), 87–107
V. I. Afanasyev, “A functional limit theorem for a critical branching process in a random environment”, Discrete Math. Appl., 11:6 (2001), 587–606
63.
V. I. Afanasyev, “Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment”, Discrete Math. Appl., 11:2 (2001), 105–131
64.
V. I. Afanasev, O. V. Zimina, A. I. Kirillov, I. M. Petrushko, T. A. Salnikova, Vysshaya matematika. Spetsialnye razdely, eds. A. I. Kirillov, FIZMATLIT, Moskva, 2001 , 400 pp.
2000
65.
V. I. Afanasyev, “On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk”, Discrete Math. Appl., 10:3 (2000), 243–264
1999
66.
V. I. Afanasyev, “On the time of reaching a fixed level by a critical branching process in a random environment”, Discrete Math. Appl., 9:6 (1999), 627–643
67.
V. I. Afanasyev, “On the maximum of a critical branching process in a random environment”, Discrete Math. Appl., 9:3 (1999), 267–284
1998
68.
V. I. Afanasyev, “A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:4 (1998), 421–438
69.
V. I. Afanasyev, “Limit theorems for a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:1 (1998), 35–52
1997
70.
V. I. Afanasyev, “A new limit theorem for a critical branching process in a random environment”, Discrete Math. Appl., 7:5 (1997), 497–513
1993
71.
V. I. Afanasyev, “A limit theorem for a critical branching process in a random environment”, Diskr. Mat., 5:1 (1993), 45–58
1991
72.
V. I. Afanasyev, “On the probability of the first passage into a fixed state for a random walk on a half-line”, Diskr. Mat., 3:1 (1991), 61–67
1990
73.
V. I. Afanasyev, “A conditional limit theorem for additive functionals of a random walk”, Theory Probab. Appl., 35:2 (1990), 330–336
74.
V. I. Afanasyev, “On a maximum of a transient random walk in random environment”, Theory Probab. Appl., 35:2 (1990), 205–215
75.
V. I. Afanasyev, “Local time of a random walk up to the first passage to the semiaxis”, Math. Notes, 48:6 (1990), 1173–1177
1987
76.
V. I. Afanasyev, “Mean value of a function of a random walk up to the time of the first passage to the semiaxis”, Math. Notes, 42:6 (1987), 992–996
1986
77.
V. I. Afanas'ev, “On functions of a random walk up to the hitting the negative half-axis”, Theory Probab. Appl., 31:4 (1986), 683–687
1979
78.
V. I. Afanas'ev, “A conditional random walk with a negative drift”, Theory Probab. Appl., 24:1 (1979), 192–199
Functional limit theorems for a decomposable branching process V. I. Afanasyev Conference «Contemporary Mathematics and its applications» dedicated to the results of research supported by the Russian Science Foundation grant 14-50-00005 November 19, 2018 15:30
Случайные блуждания и ветвящиеся процессы V. I. Afanasyev Principle Seminar of the Department of Probability Theory, Moscow State University November 28, 2007 16:45
Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, ed. V. I. Afanasyev, V. G. Mikhailov, E. E. Dyakonova, 2022, 390 с. http://mi.mathnet.ru/book1875
V. I. Afanas'ev, Random walks and branching processes, Lekts. Kursy NOC, 6, 2007, 188 с. http://mi.mathnet.ru/book648