Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Panov, Evgeny Yur'evich

Statistics Math-Net.Ru
Total publications: 33
Scientific articles: 32
Presentations: 13

Number of views:
This page:5433
Abstract pages:14188
Full texts:4463
References:1468
Panov, Evgeny Yur'evich
Professor
Doctor of physico-mathematical sciences (1998)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 20.12.1960
E-mail:
Keywords: first-order quasilinear equations, generalized solutions, measure valued solutions, Cauchy problem, boundary value problems.
UDC: 517.956.35, 517.957, 517.95
MSC: 35L60, 35L65, 35L67, 47H20

Subject:

Nonlinear first-order partial differential equations.

   
Main publications:
  1. E. Yu. Panov, “On generalized entropy solutions of the Cauchy problem for a first order quasilinear equation in the class of locally summable functions”, Izvestiya: Mathematics, 66:6 (2002), 1171–1218  crossref  mathscinet  zmath
  2. E. Yu. Panov, “Existence of strong traces for quasi-solutions of multidimensional scalar conservation laws”, J. of Hyperbolic Differential Equations, 4:4 (2007), 729–770  crossref  mathscinet  zmath
  3. Panov, E.Yu., “Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux”, Arch. Ration. Mech. Anal., 195:2 (2010), 643–673
  4. Panov, E.Yu., “On the Dirichlet problem for first order quasilinear equations on a manifold”, Trans. Am. Math. Soc., 363:5 (2011), 2393–2446
  5. Panov, Evgeniy, “On weak completeness of the set of entropy solutions to a degenerate nonlinear parabolic equation”, SIAM J. Math. Anal., 44:1 (2012), 513–535

https://www.mathnet.ru/eng/person8318
List of publications on Google Scholar
https://zbmath.org/authors/?q=ai:panov.evgeniy-yu
https://mathscinet.ams.org/mathscinet/MRAuthorID/251509
https://elibrary.ru/author_items.asp?spin=8734-8922
https://orcid.org/0000-0002-0615-1083
https://www.webofscience.com/wos/author/record/H-8303-2013
https://www.scopus.com/authid/detail.url?authorId=7005136144

Publications in Math-Net.Ru Citations
2023
1. E. Yu. Panov, “On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation”, CMFD, 69:4 (2023),  676–684  mathnet 1
2. E. Yu. Panov, “On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations”, CMFD, 69:2 (2023),  306–331  mathnet
2021
3. L. V. Gargyants, A. Yu. Goritsky, E. Yu. Panov, “Constructing unbounded discontinuous solutions of scalar conservation laws using the Legendre transform”, Mat. Sb., 212:4 (2021),  29–44  mathnet  elib; Sb. Math., 212:4 (2021), 475–489  isi  scopus 3
2020
4. E. Yu. Panov, “On decay of viscosity solutions to Hamilton–Jacobi equations with almost periodic initial data”, Algebra i Analiz, 32:4 (2020),  217–233  mathnet; St. Petersburg Math. J., 32:4 (2021), 767–779
5. E. Yu. Panov, “On the theory of entropy solutions of nonlinear degenerate parabolic equations”, CMFD, 66:2 (2020),  292–313  mathnet 1
2017
6. E. Yu. Panov, “The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions”, Mat. Sb., 208:8 (2017),  126–144  mathnet  mathscinet  elib; Sb. Math., 208:8 (2017), 1207–1224  isi  scopus
2016
7. E. Yu. Panov, “Long Time Asymptotics of Periodic Generalized Entropy Solutions of Scalar Conservation Laws”, Mat. Zametki, 100:1 (2016),  133–143  mathnet  mathscinet  elib; Math. Notes, 100:1 (2016), 113–122  isi  scopus 5
2013
8. E. Yu. Panov, “Renormalized entropy solutions of the Cauchy problem for a first-order inhomogeneous quasilinear equation”, Mat. Sb., 204:10 (2013),  91–126  mathnet  mathscinet  zmath  elib; Sb. Math., 204:10 (2013), 1480–1515  isi  elib  scopus
2008
9. E. Yu. Panov, “On the symmetrizability of hyperbolic matrix spaces”, Algebra i Analiz, 20:3 (2008),  187–196  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 20:3 (2009), 465–471  isi
2007
10. M. V. Korobkov, E. Yu. Panov, “Necessary and sufficient conditions for a curve to be the gradient range of a $C^1$-smooth function”, Sibirsk. Mat. Zh., 48:4 (2007),  789–810  mathnet  mathscinet  zmath  elib; Siberian Math. J., 48:4 (2007), 629–647  isi  elib  scopus 5
2006
11. E. Yu. Panov, “On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations”, Fundam. Prikl. Mat., 12:5 (2006),  175–188  mathnet  mathscinet  zmath  elib; J. Math. Sci., 150:6 (2008), 2578–2587  scopus 8
12. M. V. Korobkov, E. Yu. Panov, “Isentropic solutions of quasilinear equations of the first order”, Mat. Sb., 197:5 (2006),  99–124  mathnet  mathscinet  zmath  elib; Sb. Math., 197:5 (2006), 727–752  isi  scopus 9
2002
13. E. Yu. Panov, “On generalized entropy solutions of the Cauchy problem for a first-order quasilinear equation in the class of locally summable functions”, Izv. RAN. Ser. Mat., 66:6 (2002),  91–136  mathnet  mathscinet  zmath; Izv. Math., 66:6 (2002), 1171–1218 29
14. E. Yu. Panov, “On statistic solutions to Cauchy problem for a first order quasilinear equation”, Matem. Mod., 14:3 (2002),  17–26  mathnet  mathscinet  zmath 4
15. E. Yu. Panov, “Maximum and minimum generalized entropy solutions to the Cauchy problem for a first-order quasilinear equation”, Mat. Sb., 193:5 (2002),  95–112  mathnet  mathscinet  zmath  elib; Sb. Math., 193:5 (2002), 727–743  isi  scopus 14
16. A. Yu. Goritskii, E. Yu. Panov, “Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a First-Order Quasilinear Equation”, Trudy Mat. Inst. Steklova, 236 (2002),  120–133  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 236 (2002), 110–123 9
2001
17. E. Yu. Panov, “A Remark on the Theory of Generalized Entropy Sub- and Supersolutions of the Cauchy Problem for a First-Order Quasilinear Equation”, Differ. Uravn., 37:2 (2001),  252–259  mathnet  mathscinet; Differ. Equ., 37:2 (2001), 272–280 14
2000
18. E. Yu. Panov, “On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws”, Mat. Sb., 191:1 (2000),  127–157  mathnet  mathscinet  zmath  elib; Sb. Math., 191:1 (2000), 121–150  isi  scopus 18
1999
19. E. Yu. Panov, “A non-local theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws”, Izv. RAN. Ser. Mat., 63:1 (1999),  133–184  mathnet  mathscinet  zmath; Izv. Math., 63:1 (1999), 129–179  isi 7
20. E. Yu. Panov, “Property of strong precompactness for bounded sets of measure-valued solutions of a first-order quasilinear equation”, Mat. Sb., 190:3 (1999),  109–128  mathnet  mathscinet  zmath; Sb. Math., 190:3 (1999), 427–446  isi  scopus 19
1998
21. E. Yu. Panov, “On kinetic interpretation of measure valued solutions to Cauchy problem for a first order quasilinear equation”, Fundam. Prikl. Mat., 4:1 (1998),  317–332  mathnet  mathscinet  zmath 1
1997
22. E. Yu. Panov, “On the Cauchy problem for a first-order quasilinear equation on a manifold”, Differ. Uravn., 33:2 (1997),  257–266  mathnet  mathscinet; Differ. Equ., 33:2 (1997), 257–266 2
23. E. Yu. Panov, “A class of systems of quasilinear conservation laws”, Mat. Sb., 188:5 (1997),  85–112  mathnet  mathscinet  zmath; Sb. Math., 188:5 (1997), 725–751  isi  scopus 6
24. E. Yu. Panov, “An approximation scheme for measure-valued solutions of a first-order quasilinear equation”, Mat. Sb., 188:1 (1997),  83–108  mathnet  mathscinet  zmath; Sb. Math., 188:1 (1997), 87–113  isi  scopus
1996
25. E. Yu. Panov, “On measure-valued solutions of the Cauchy problem for a first-order quasilinear equation”, Izv. RAN. Ser. Mat., 60:2 (1996),  107–148  mathnet  mathscinet  zmath; Izv. Math., 60:2 (1996), 335–377  isi  scopus 30
26. E. Yu. Panov, “Generalized solutions of the Cauchy problem for some classes of first-order hyperbolic systems”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 6,  75–77  mathnet  mathscinet  zmath 1
1995
27. E. Yu. Panov, “On strong precompactness of bounded sets of measure-valued solutions of a first order quasilinear equation”, Mat. Sb., 186:5 (1995),  103–114  mathnet  mathscinet  zmath; Sb. Math., 186:5 (1995), 729–740  isi 22
1994
28. E. Yu. Panov, “Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy”, Mat. Zametki, 55:5 (1994),  116–129  mathnet  mathscinet  zmath; Math. Notes, 55:5 (1994), 517–525  isi 18
29. E. Yu. Panov, “On sequences of measure-valued solutions of a first-order quasilinear equation”, Mat. Sb., 185:2 (1994),  87–106  mathnet  mathscinet  zmath; Russian Acad. Sci. Sb. Math., 81:1 (1995), 211–227  isi 31
1993
30. E. Yu. Panov, “Strong measure-valued solutions of the Cauchy problem for a first-order quasilinear equation with a bounded measure-valued initial function”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 1,  20–23  mathnet  mathscinet  zmath 4
1990
31. S. N. Kruzhkov, E. Yu. Panov, “First-order conservative quasilinear laws with an infinite domain of dependence on the initial data”, Dokl. Akad. Nauk SSSR, 314:1 (1990),  79–84  mathnet  mathscinet  zmath; Dokl. Math., 42:2 (1991), 316–321 13
1988
32. E. Yu. Panov, “On the Cauchy problem for a first-order quasi-linear equation in the class of locally integrable functions”, Uspekhi Mat. Nauk, 43:1(259) (1988),  205–206  mathnet  mathscinet  zmath; Russian Math. Surveys, 43:1 (1988), 249–250  isi

1998
33. N. S. Bakhvalov, M. I. Zelikin, A. S. Kalashnikov, V. L. Kamynin, O. A. Oleinik, E. Yu. Panov, N. S. Petrosyan, V. M. Tikhomirov, A. V. Faminskii, V. N. Chubarikov, “Stanislav Nikolaevich Kruzhkov (obituary)”, Uspekhi Mat. Nauk, 53:5(323) (1998),  213–220  mathnet  mathscinet  zmath; Russian Math. Surveys, 53:5 (1998), 1071–1078  isi

Presentations in Math-Net.Ru
1. On self-similar solutions of a multiphase Stefan problem on the half-line
E. Yu. Panov
Friends in Partial Differential Equations
May 24, 2024 11:30   
2. ÎÁ ÀÂÒÎÌÎÄÅËÜÍÛÕ ÐÅØÅÍÈßÕ ÌÍÎÃÎÌÅÐÍÎÉ ÌÍÎÃÎÔÀÇÍÎÉ ÇÀÄÀ×È ÑÒÅÔÀÍÀ
E. Yu. Panov
Seminar on nonlinear problems of partial differential equations and mathematical physics
February 13, 2024 18:00   
3. On self-similar solutions of a non-standard Stefan problem
E. Yu. Panov
V. I. Smirnov Seminar on Mathematical Physics
September 25, 2023 15:00
4. On variational description of entropy solutions to the Riemann problem for a scalar conservation law
E. Yu. Panov
International scientific workshop OTHA Fall 2022
December 19, 2022 15:10   
5. On solutions of a multi-phase Stefan-Riemann problem
E. Yu. Panov
Seminar on Analysis, Differential Equations and Mathematical Physics
November 24, 2022 18:00
6. Îá àâòîìîäåëüíûõ ðåøåíèÿõ ìíîãîôàçíîé çàäà÷è Ñòåôàíà
E. Yu. Panov

November 9, 2022 15:00
7. On solutions of the Riemann-Stefan problem
E. Yu. Panov
Seminar on nonlinear problems of partial differential equations and mathematical physics
October 25, 2022 18:00   
8. On weak completeness of the set of entropy solutions to scalar conservation law with discontinuous flux
E. Yu. Panov
V. I. Smirnov Seminar on Mathematical Physics
November 8, 2021 16:30   
9. On decay of entropy solutions to degenerate nonlinear parabolic equations
E. Yu. Panov
Seminar on nonlinear problems of partial differential equations and mathematical physics
September 28, 2021 18:00   
10. On differential equations on the Bohr compact
E. Yu. Panov
Mathematical Physics, Dynamical Systems and Infinite-Dimensional Analysis – 2021
July 5, 2021 19:00   
11. On decay of entropy solutions to scalar conservation laws
E. Yu. Panov
V. I. Smirnov Seminar on Mathematical Physics
May 10, 2021 16:30   
12. On decay of almost periodic entropy solutions to multidimensional scalar conservation laws
E. Yu. Panov
The Seventh International Conference on Differential and Functional Differential Equations
August 23, 2014 18:45   
13. On decay of almost periodic entropy solutions to scalar conservation laws
E. Yu. Panov
International Conference on Differential Equations and Dynamical Systems
July 4, 2014 11:30

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024