Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2024, Issue 4(61), Pages 70–77
DOI: https://doi.org/10.54341/20778708_2024_4_61_70
(Mi pfmt1003)
 

INFORMATION SCIENCE

Neural network model and classifier training algorithm for processing human serum gel electrophoresis data

K. S. Kurochkaa, K. A. Panarina, K. S. Makeevab

a Sukhoi State Technical University of Gomel
b Gomel State Medical University
References:
DOI: https://doi.org/10.54341/20778708_2024_4_61_70
Abstract: The analysis of biomedical images of proteinograms obtained as a result of gel electrophoresis is a research area of current interest. As a result of the study of various methods and means of analyzing electrophoregrams, the authors proposed a resource-efficient and fast model of convolutional neural network, which allows the classification of human blood serum proteinograms with high accuracy at low requirements to computing resources of the computer.
Keywords: neural networks, computer vision, image recognition, proteinograms, electrophoresis.
Received: 03.05.2024
Bibliographic databases:
Document Type: Article
UDC: 004.032.26
Language: Russian
Citation: K. S. Kurochka, K. A. Panarin, K. S. Makeeva, “Neural network model and classifier training algorithm for processing human serum gel electrophoresis data”, PFMT, 2024, no. 4(61), 70–77
Citation in format AMSBIB
\Bibitem{KurPanMak24}
\by K.~S.~Kurochka, K.~A.~Panarin, K.~S.~Makeeva
\paper Neural network model and classifier training algorithm for processing human serum gel electrophoresis data
\jour PFMT
\yr 2024
\issue 4(61)
\pages 70--77
\mathnet{http://mi.mathnet.ru/pfmt1003}
\edn{https://elibrary.ru/INSQVT}
Linking options:
  • https://www.mathnet.ru/eng/pfmt1003
  • https://www.mathnet.ru/eng/pfmt/y2024/i4/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025