Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2025, Issue 1(62), Pages 87–101
DOI: https://doi.org/10.54341/20778708_2025_1_62_87
(Mi pfmt1020)
 

MATHEMATICS

On $\sigma$-local formations of finite groups with bounded $\mathfrak{H}_\sigma$-defect

I. N. Safonova, V. V. Skrundz

Belarusian State University, Minsk
DOI: https://doi.org/10.54341/20778708_2025_1_62_87
Abstract: Let $\mathfrak{F}$ and $\mathfrak{H}$ be some $\sigma$-local formations of finite groups. Then $\mathfrak{F}/_\sigma\ \mathfrak{H}\cap\mathfrak{F}$ denote the lattice of all $\sigma$-local formations $\mathfrak{X}$ such that $\mathfrak{H}\cap\mathfrak{F}\subseteq\mathfrak{X}\subseteq\mathfrak{F}$. The length of the lattice $\mathfrak{F}/_\sigma\ \mathfrak{H}\cap\mathfrak{F}$ is called a $\mathfrak{H}_\sigma$-defect of the $\sigma$-local formation $\mathfrak{F}$. In particular, if $\mathfrak{H}$ is the formation of all identity groups, then the $\mathfrak{H}_\sigma$-defect of a $\sigma$-local formation $\mathfrak{F}$ is called a $l_\sigma$-length of the formation $\mathfrak{F}$. The general properties of $\mathfrak{H}_\sigma$-defect of $\sigma$-local formations are studied, the description of minimal $\sigma$-local non-$\mathfrak{H}$-formations for an arbitrary $\sigma$-nilpotent $\sigma$-local formation $\mathfrak{H}$ is obtained, the description of the lattice structure of $\sigma$-local formations of $\mathfrak{H}_\sigma$-defect $1$ is given. The descriptions of the lattice structure of reducible $\sigma$-local formations of finite $\mathfrak{H}_\sigma$-defect, as well as the lattice structure of reducible $\sigma$-local formations of finite $l_\sigma$-length are obtained.
Keywords: finite group, $\sigma$-local formation, critical $\sigma$-local formation, $\mathfrak{H}_\sigma$-defect of a $\sigma$-local formation, $l_\sigma$-length of a $\sigma$-local formation.
Funding agency Grant number
ГПНИ "Конвергенция-2025" 20211328
Received: 14.01.2025
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: I. N. Safonova, V. V. Skrundz, “On $\sigma$-local formations of finite groups with bounded $\mathfrak{H}_\sigma$-defect”, PFMT, 2025, no. 1(62), 87–101
Citation in format AMSBIB
\Bibitem{SafSkr25}
\by I.~N.~Safonova, V.~V.~Skrundz
\paper On $\sigma$-local formations of finite groups with bounded $\mathfrak{H}_\sigma$-defect
\jour PFMT
\yr 2025
\issue 1(62)
\pages 87--101
\mathnet{http://mi.mathnet.ru/pfmt1020}
\edn{https://elibrary.ru/OQGGJH}
Linking options:
  • https://www.mathnet.ru/eng/pfmt1020
  • https://www.mathnet.ru/eng/pfmt/y2025/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025