Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2024, Issue 4(61), Pages 40–44
DOI: https://doi.org/10.54341/20778708_2024_4_61_40
(Mi pfmt997)
 

MATHEMATICS

Irregularizability of the Dirichlet problem for one biharmonic system in $\mathbb{R}^4$

A. I. Basika, E. V. Gricukb, D. V. Halutsa

a Brest State A.S. Pushkin University
b Brest State Technical University
References:
DOI: https://doi.org/10.54341/20778708_2024_4_61_40
Abstract: A linear homogeneous system of p first order differential equations in $\mathbb{R}^d$ is called biharmonic if each component of its arbitrary continuously differentiable solution satisfies the equation $\Delta^2u=0$, where $\Delta$ is the Laplace operator in $\mathbb{R}^d$. In this article we give an example of a biharmonic system in $\mathbb{R}^4$, which is neither a four-dimensional analogue of the Cauchy – Riemann system nor an elliptic pseudo-symmetric system. For this system we consider the Dirichlet problem in an arbitrary bounded region with a sufficiently smooth boundary. It is proved that at some point of the boundary the rank of the Lopatinski matrix of the Dirichlet problem is not maximal. It is also shown that at this point the limit problem for the considered Dirichlet problem is not uniquely solvable.
Keywords: elliptic system, Dirichlet problem, regularizable boundary value problem, Lopatinski condition.
Received: 22.04.2024
Bibliographic databases:
Document Type: Article
UDC: 517.954
Language: Russian
Citation: A. I. Basik, E. V. Gricuk, D. V. Haluts, “Irregularizability of the Dirichlet problem for one biharmonic system in $\mathbb{R}^4$”, PFMT, 2024, no. 4(61), 40–44
Citation in format AMSBIB
\Bibitem{BasGriHal24}
\by A.~I.~Basik, E.~V.~Gricuk, D.~V.~Haluts
\paper Irregularizability of the Dirichlet problem for one biharmonic system in $\mathbb{R}^4$
\jour PFMT
\yr 2024
\issue 4(61)
\pages 40--44
\mathnet{http://mi.mathnet.ru/pfmt997}
\edn{https://elibrary.ru/UESTUB}
Linking options:
  • https://www.mathnet.ru/eng/pfmt997
  • https://www.mathnet.ru/eng/pfmt/y2024/i4/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025