|
|
Problemy Peredachi Informatsii, 1983, Volume 19, Issue 1, Pages 91–99
(Mi ppi1167)
|
|
|
|
Information in Living Systems
Stable Single-Locus Polyallele Populations
L. A. Kun, L. N. Lupichev
Abstract:
The paper deals with mathematical evolutionary genetics and is closely allied to [Yu. I. Lyubich, G. D. Maistrovskii, and Yu. G. Ol'khovskii, Dokl. Akad. Nauk SSSR, 1976, vol. 226, no. 1, pp. 58–60, Probl. Peredachi Inf., 1980, vol. 16, no. 1, pp. 93–104; L. A. Kun and Yu. I. Lyubich, Dokl. Akad. Nauk SSSR, 1979, vol. 249, no. 5, pp. 1052–1054, Probl. Peredachi Inf., 1980, vol. 16, no. 2, pp. 92–102, Kibernetika, 1980, no. 2, pp. 137–138]. It considers $\Omega$-stable infinite single-locus polyallele populations and polylocus polyallele populations with small crossing-over, under the action of stationary selection.
Received: 09.10.1981
Citation:
L. A. Kun, L. N. Lupichev, “Stable Single-Locus Polyallele Populations”, Probl. Peredachi Inf., 19:1 (1983), 91–99; Problems Inform. Transmission, 19:1 (1983), 77–85
Linking options:
https://www.mathnet.ru/eng/ppi1167 https://www.mathnet.ru/eng/ppi/v19/i1/p91
|
| Statistics & downloads: |
| Abstract page: | 258 | | Full-text PDF : | 109 |
|