Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1978, Volume 14, Issue 2, Pages 61–66 (Mi ppi1535)  

Methods of Signal Processing

Estimation of Spectral Functions

B. Ya. Levit, A. M. Samarov
Abstract: Lower bounds are obtained in the problem of estimating the spectral function of a stationary Gaussian sequence. As a corollary, a result to the effect that known spectral estimates are asymptotically unimprovable is formulated.
Received: 07.05.1976
Bibliographic databases:
Document Type: Article
UDC: 621.391.14
Language: Russian
Citation: B. Ya. Levit, A. M. Samarov, “Estimation of Spectral Functions”, Probl. Peredachi Inf., 14:2 (1978), 61–66; Problems Inform. Transmission, 14:2 (1978), 120–124
Citation in format AMSBIB
\Bibitem{LevSam78}
\by B.~Ya.~Levit, A.~M.~Samarov
\paper Estimation of Spectral Functions
\jour Probl. Peredachi Inf.
\yr 1978
\vol 14
\issue 2
\pages 61--66
\mathnet{http://mi.mathnet.ru/ppi1535}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=506223}
\zmath{https://zbmath.org/?q=an:0383.62066}
\transl
\jour Problems Inform. Transmission
\yr 1978
\vol 14
\issue 2
\pages 120--124
Linking options:
  • https://www.mathnet.ru/eng/ppi1535
  • https://www.mathnet.ru/eng/ppi/v14/i2/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025