Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2003, Volume 39, Issue 1, Pages 36–52 (Mi ppi156)  

This article is cited in 3 scientific papers (total in 3 papers)

Problems of Robustness for Universal Coding Schemes

V. V. V'yugin
References:
Abstract: The Lempel–Ziv universal coding scheme is asymptotically optimal for the class of all stationary ergodic sources. A problem of robustness of this property under small violations of ergodicity is studied. The notion of deficiency of algorithmic randomness is used as a measure of disagreement between data sequence and probability measure. We prove that universal compression schemes from a large class are nonrobust in the following sense: If the randomness deficiency grows arbitrarily slowly on initial fragments of an infinite sequence, then the property of asymptotic optimality of any universal compression algorithm can be violated. Lempel–Ziv compression algorithms are robust on infinite sequences generated by ergodic Markov chains when the randomness deficiency of their initial fragments of length $n$ grows as $o(n)$.
English version:
Problems of Information Transmission, 2003, Volume 39, Issue 1, Pages 32–46
DOI: https://doi.org/10.1023/A:1023626414365
Bibliographic databases:
UDC: 621.391.1:519.2
Language: Russian
Citation: V. V. V'yugin, “Problems of Robustness for Universal Coding Schemes”, Probl. Peredachi Inf., 39:1 (2003), 36–52; Problems Inform. Transmission, 39:1 (2003), 32–46
Citation in format AMSBIB
\Bibitem{Vyu03}
\by V.~V.~V'yugin
\paper Problems of Robustness for Universal Coding Schemes
\jour Probl. Peredachi Inf.
\yr 2003
\vol 39
\issue 1
\pages 36--52
\mathnet{http://mi.mathnet.ru/ppi156}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2101343}
\zmath{https://zbmath.org/?q=an:1077.94010}
\transl
\jour Problems Inform. Transmission
\yr 2003
\vol 39
\issue 1
\pages 32--46
\crossref{https://doi.org/10.1023/A:1023626414365}
Linking options:
  • https://www.mathnet.ru/eng/ppi156
  • https://www.mathnet.ru/eng/ppi/v39/i1/p36
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025