Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1976, Volume 12, Issue 3, Pages 35–40 (Mi ppi1697)  

Methods of Signal Processing

On Approximation of Binary Random Vectors in Discriminant-Analysis Problems

L. G. Malinovskii
Abstract: With reference to the construction of a discriminant function, this paper makes a comparison of the approximation quality of the probability distributions of binary random vectors for which the number of independent parameters is $2^l-1$. A comparison is made of the Bahadur function and the probability density function of the normal distribution law, with number of parameters equal to $l(l+1)/2$. It is shown that these approximations are equally effective for setting up a classification rule; this makes it easier to investigate binary random vectors and random vectors containing binary and continuous features.
Received: 15.01.1975
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.25
Language: Russian
Citation: L. G. Malinovskii, “On Approximation of Binary Random Vectors in Discriminant-Analysis Problems”, Probl. Peredachi Inf., 12:3 (1976), 35–40; Problems Inform. Transmission, 12:3 (1976), 188–192
Citation in format AMSBIB
\Bibitem{Mal76}
\by L.~G.~Malinovskii
\paper On Approximation of Binary Random Vectors in Discriminant-Analysis Problems
\jour Probl. Peredachi Inf.
\yr 1976
\vol 12
\issue 3
\pages 35--40
\mathnet{http://mi.mathnet.ru/ppi1697}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=468040}
\zmath{https://zbmath.org/?q=an:0398.62048}
\transl
\jour Problems Inform. Transmission
\yr 1976
\vol 12
\issue 3
\pages 188--192
Linking options:
  • https://www.mathnet.ru/eng/ppi1697
  • https://www.mathnet.ru/eng/ppi/v12/i3/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025