Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2010, Volume 46, Issue 2, Pages 66–90 (Mi ppi2016)  

This article is cited in 4 scientific papers (total in 4 papers)

Large Systems

Large deviations for distributions of sums of random variables: Markov chain method

V. R. Fatalov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let $\{\xi_k\}_{k=0}^\infty$ be a sequence of i.i.d. real-valued random variables, and let $g(x)$ be a continuous positive function. Under rather general conditions, we prove results on sharp asymptotics of the probabilities $\mathbf P\{\frac1n\sum_{k=0}^{n-1}g(\xi_k)<d\}$, $n\to\infty$, and also of their conditional versions. The results are obtained using a new method developed in the paper, namely, the Laplace method for sojourn times of discrete-time Markov chains. We consider two examples: standard Gaussian random variables with $g(x)=x^p$, $p>0$, and exponential random variables with $g(x)=x$ for $x\ge0$.
Received: 01.07.2008
Revised: 11.12.2009
English version:
Problems of Information Transmission, 2010, Volume 46, Issue 2, Pages 160–183
DOI: https://doi.org/10.1134/S0032946010020055
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.2
Language: Russian
Citation: V. R. Fatalov, “Large deviations for distributions of sums of random variables: Markov chain method”, Probl. Peredachi Inf., 46:2 (2010), 66–90; Problems Inform. Transmission, 46:2 (2010), 160–183
Citation in format AMSBIB
\Bibitem{Fat10}
\by V.~R.~Fatalov
\paper Large deviations for distributions of sums of random variables: Markov chain method
\jour Probl. Peredachi Inf.
\yr 2010
\vol 46
\issue 2
\pages 66--90
\mathnet{http://mi.mathnet.ru/ppi2016}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2724797}
\elib{https://elibrary.ru/item.asp?id=15336968}
\transl
\jour Problems Inform. Transmission
\yr 2010
\vol 46
\issue 2
\pages 160--183
\crossref{https://doi.org/10.1134/S0032946010020055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280241600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956162588}
Linking options:
  • https://www.mathnet.ru/eng/ppi2016
  • https://www.mathnet.ru/eng/ppi/v46/i2/p66
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:631
    Full-text PDF :137
    References:139
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025