Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2015, Volume 51, Issue 3, Pages 41–69 (Mi ppi2179)  

This article is cited in 4 scientific papers (total in 4 papers)

Methods of Signal Processing

Strong divergence for system approximations

H. Bochea, U. J. Mönichb

a Technische Universität München, Lehrstuhl für Theoretische Informationstechnik, Germany, Germany
b Massachusetts Institute of Technology, Research Laboratory of Electronics, New York, USA
Full-text PDF (325 kB) Citations (4)
References:
Abstract: In this paper we analyze approximation of stable linear time-invariant systems, like the Hilbert transform, by sampling series for bandlimited functions in the Paley–Wiener space $\mathcal{PW}_\pi^1$. It is known that there exist systems and functions such that the approximation process is weakly divergent, i.e., divergent for certain subsequences. Here we strengthen this result by proving strong divergence, i.e., divergence for all subsequences. Further, in case of divergence, we give the divergence speed. We consider sampling at Nyquist rate as well as oversampling with adaptive choice of the kernel. Finally, connections between strong divergence and the Banach–Steinhaus theorem, which is not powerful enough to prove strong divergence, are discussed.
Received: 03.01.2015
English version:
Problems of Information Transmission, 2015, Volume 51, Issue 3, Pages 240–266
DOI: https://doi.org/10.1134/S0032946015030047
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+517
Language: Russian
Citation: H. Boche, U. J. Mönich, “Strong divergence for system approximations”, Probl. Peredachi Inf., 51:3 (2015), 41–69; Problems Inform. Transmission, 51:3 (2015), 240–266
Citation in format AMSBIB
\Bibitem{BocMon15}
\by H.~Boche, U.~J.~M\"onich
\paper Strong divergence for system approximations
\jour Probl. Peredachi Inf.
\yr 2015
\vol 51
\issue 3
\pages 41--69
\mathnet{http://mi.mathnet.ru/ppi2179}
\transl
\jour Problems Inform. Transmission
\yr 2015
\vol 51
\issue 3
\pages 240--266
\crossref{https://doi.org/10.1134/S0032946015030047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363254900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944447229}
Linking options:
  • https://www.mathnet.ru/eng/ppi2179
  • https://www.mathnet.ru/eng/ppi/v51/i3/p41
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025