Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2016, Volume 52, Issue 4, Pages 31–48 (Mi ppi2220)  

This article is cited in 3 scientific papers (total in 3 papers)

Methods of Signal Processing

On risk concentration for convex combinations of linear estimators

G. K. Golubevab

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b CNRS, Aix-Marseille Université, I2M, UMR, Marseille, France
Full-text PDF (242 kB) Citations (3)
References:
Abstract: We consider the estimation problem for an unknown vector $\beta\in\mathbb R^p$ in a linear model $Y=X\beta+\sigma\xi$, where $\xi\in\mathbb R^n$ is a standard discrete white Gaussian noise and $X$ is a known $n\times p$ matrix with $n\ge p$. It is assumed that $p$ is large and $X$ is an ill-conditioned matrix. To estimate $\beta$ in this situation, we use a family of spectral regularizations of the maximum likelihood method $\widetilde\beta^\alpha(Y)= H^\alpha(X^\top X)\widehat\beta^\circ(Y)$, $\alpha\in\mathbb R^+$, where $\widehat\beta^\circ(Y)$ is the maximum likelihood estimate for $\beta$ and $\{H^\alpha(\cdot)\colon\mathbb R^+\to[0,1],\ \alpha\in\mathbb R^+\}$ is a given ordered family of functions indexed by a regularization parameter $\alpha$. The final estimate for $\beta$ is constructed as a convex combination (in $\alpha$) of the estimates $\widetilde\beta^\alpha(Y)$ with weights chosen based on the observations $Y$. We present inequalities for large deviations of the norm of the prediction error of this method.
Funding agency Grant number
Russian Science Foundation 14-50-00150
The research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
Received: 25.11.2015
Revised: 05.04.2016
English version:
Problems of Information Transmission, 2016, Volume 52, Issue 4, Pages 344–358
DOI: https://doi.org/10.1134/S0032946016040037
Bibliographic databases:
Document Type: Article
UDC: 621.391.1
Language: Russian
Citation: G. K. Golubev, “On risk concentration for convex combinations of linear estimators”, Probl. Peredachi Inf., 52:4 (2016), 31–48; Problems Inform. Transmission, 52:4 (2016), 344–358
Citation in format AMSBIB
\Bibitem{Gol16}
\by G.~K.~Golubev
\paper On risk concentration for convex combinations of linear estimators
\jour Probl. Peredachi Inf.
\yr 2016
\vol 52
\issue 4
\pages 31--48
\mathnet{http://mi.mathnet.ru/ppi2220}
\elib{https://elibrary.ru/item.asp?id=29468064}
\transl
\jour Problems Inform. Transmission
\yr 2016
\vol 52
\issue 4
\pages 344--358
\crossref{https://doi.org/10.1134/S0032946016040037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392083800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008476138}
Linking options:
  • https://www.mathnet.ru/eng/ppi2220
  • https://www.mathnet.ru/eng/ppi/v52/i4/p31
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025