Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 2, Pages 73–85 (Mi ppi2267)  

This article is cited in 1 scientific paper (total in 1 paper)

Large Systems

Clique numbers of random subgraphs of some distance graphs

A. S. Gusev

Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (202 kB) Citations (1)
References:
Abstract: We consider a class of graphs $G(n,r,s)=(V(n,r),E(n,r,s))$, defined as follows:
$$ \begin{aligned} & V(n,r)=\{\boldsymbol x=(x_1, x_2,\dots,x_n)\colon x_i\in\{0,1\},\ x_1+x_2+\dots+x_n=r\},\\ & E(n,r,s)=\{\{\boldsymbol x,\boldsymbol y\}\colon(\boldsymbol x,\boldsymbol y)=s\}, \end{aligned} $$
where $(x,y)$ is the Euclidean scalar product. We study random subgraphs $\mathcal G(G(n,r,s), p)$ with edges independently chosen from the set $E(n,r,s)$ with probability $p$ each. We find nontrivial lower and upper bounds on the clique number of such graphs.
Received: 18.12.2017
Revised: 23.03.2018
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 2, Pages 165–175
DOI: https://doi.org/10.1134/S0032946018020059
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.1
Language: Russian
Citation: A. S. Gusev, “Clique numbers of random subgraphs of some distance graphs”, Probl. Peredachi Inf., 54:2 (2018), 73–85; Problems Inform. Transmission, 54:2 (2018), 165–175
Citation in format AMSBIB
\Bibitem{Gus18}
\by A.~S.~Gusev
\paper Clique numbers of random subgraphs of some distance graphs
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 2
\pages 73--85
\mathnet{http://mi.mathnet.ru/ppi2267}
\elib{https://elibrary.ru/item.asp?id=35768883}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 2
\pages 165--175
\crossref{https://doi.org/10.1134/S0032946018020059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438828500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049979697}
Linking options:
  • https://www.mathnet.ru/eng/ppi2267
  • https://www.mathnet.ru/eng/ppi/v54/i2/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025