Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2021, Volume 57, Issue 4, Pages 87–109
DOI: https://doi.org/10.31857/S0555292321040082
(Mi ppi2358)
 

This article is cited in 2 scientific papers (total in 2 papers)

Large Systems

New modularity bounds for graphs $G(n,r,s)$ and $G_p(n,r,s)$

N. M. Derevyankoa, M. M. Koshelevb

a Moscow Institute of Physics and Technology (National Research University), Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (299 kB) Citations (2)
References:
Abstract: We analyze the behavior of the modularity of $G(n,r,s)$ graphs in the case of $r=o(\sqrt{{n}})$ and $n\to\infty$ and also that of $G_p(n,r,s)$ graphs for fixed $r$ and $s$ as $n\to\infty$. For $G(n,r,s)$ graphs with $r\ge cs^2$, we obtain substantial improvements of previously known upper bounds. Upper and lower bounds previously obtained for $G(n,r,s)$ graphs are extended to the family of $G_p(n,r,s)$ graphs with $p=p(n)=\omega\bigl(n^{-\frac{r-s-1}{2}}\bigr)$ and fixed $r$ and $s$.
Keywords: modularity, Johnson graphs, clusterization, random graphs.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation НШ-2540.2020.1
Foundation for the Development of Theoretical Physics and Mathematics BASIS
The research was supported by the President of the Russian Federation Council for State Support of Leading Scientific Schools, grant no. NSh-2540.2020.1, and the Theoretical Physics and Mathematics Advancement Foundation “BASIS.”
Received: 22.06.2021
Revised: 27.11.2021
Accepted: 27.11.2021
English version:
Problems of Information Transmission, 2021, Volume 57, Issue 4, Pages 380–401
DOI: https://doi.org/10.1134/S0032946021040086
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.175.4
Language: Russian
Citation: N. M. Derevyanko, M. M. Koshelev, “New modularity bounds for graphs $G(n,r,s)$ and $G_p(n,r,s)$”, Probl. Peredachi Inf., 57:4 (2021), 87–109; Problems Inform. Transmission, 57:4 (2021), 380–401
Citation in format AMSBIB
\Bibitem{DerKos21}
\by N.~M.~Derevyanko, M.~M.~Koshelev
\paper New modularity bounds for graphs $G(n,r,s)$ and $G_p(n,r,s)$
\jour Probl. Peredachi Inf.
\yr 2021
\vol 57
\issue 4
\pages 87--109
\mathnet{http://mi.mathnet.ru/ppi2358}
\crossref{https://doi.org/10.31857/S0555292321040082}
\transl
\jour Problems Inform. Transmission
\yr 2021
\vol 57
\issue 4
\pages 380--401
\crossref{https://doi.org/10.1134/S0032946021040086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742673500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122974530}
Linking options:
  • https://www.mathnet.ru/eng/ppi2358
  • https://www.mathnet.ru/eng/ppi/v57/i4/p87
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025