Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2022, Volume 58, Issue 4, Pages 3–5
DOI: https://doi.org/10.31857/S0555292322040015
(Mi ppi2379)
 

Information Theory

Remarks on reverse Pinsker inequalities

X. Y. Guia, Y. C. Huangbc

a School of Transportation Engineering, East China Jiaotong University, Nanchang, Jiangxi Province, People’s Republic of China
b Institut Galilée, LAGA, CNRS (UMR 7539), Université Sorbonne Paris Nord, Villetaneuse, France
c School of Mathematical Sciences, Nanjing Normal University, Nanjing, People’s Republic of China
References:
Abstract: In this note we propose a simplified approach to recent reverse Pinsker inequalities due to O. Binette. More precisely, we give direct proofs of optimal variational bounds on $f$-divergence with possible constraints on relative information extrema. Our arguments are closer in spirit to those of Sason and Verdú.
Keywords: Kullback–Leibler divergence, total variation, reverse Pinsker inequalities, $f$-divergence, convexity, sharp inequalities, extremizer.
Funding agency Grant number
National Natural Science Foundation of China 11801274
China Scholarship Council 202006865011
The research of Y.C. Huang was partially supported by the National NSF grant of China, no. 11801274. This note was completed while Y.C. Huang was on leave, funded by the CSC Postdoctoral/Visiting Scholar Program no. 202006865011, at LAGA, Université Sorbonne Paris Nord.
Received: 24.06.2022
Revised: 23.09.2022
Accepted: 24.09.2022
English version:
Problems of Information Transmission, 2022, Volume 58, Issue 4, Pages 297–299
DOI: https://doi.org/10.1134/S0032946022040019
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.72
Language: Russian
Citation: X. Y. Gui, Y. C. Huang, “Remarks on reverse Pinsker inequalities”, Probl. Peredachi Inf., 58:4 (2022), 3–5; Problems Inform. Transmission, 58:4 (2022), 297–299
Citation in format AMSBIB
\Bibitem{GuiHua22}
\by X.~Y.~Gui, Y.~C.~Huang
\paper Remarks on reverse Pinsker inequalities
\jour Probl. Peredachi Inf.
\yr 2022
\vol 58
\issue 4
\pages 3--5
\mathnet{http://mi.mathnet.ru/ppi2379}
\crossref{https://doi.org/10.31857/S0555292322040015}
\edn{https://elibrary.ru/EBBEJG}
\transl
\jour Problems Inform. Transmission
\yr 2022
\vol 58
\issue 4
\pages 297--299
\crossref{https://doi.org/10.1134/S0032946022040019}
Linking options:
  • https://www.mathnet.ru/eng/ppi2379
  • https://www.mathnet.ru/eng/ppi/v58/i4/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ïðîáëåìû ïåðåäà÷è èíôîðìàöèè Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025