Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2023, Volume 59, Issue 2, Pages 102–119
DOI: https://doi.org/10.31857/S0555292323020079
(Mi ppi2400)
 

This article is cited in 1 scientific paper (total in 1 paper)

Information Protection

Existence of sequences satisfying bilinear type recurrence relations

A. A. Illarionovab

a Higher School of Economics—National Research University, Moscow, Russia
b Khabarovsk Branch of the Institute of Applied Mathematics of the Far East Branch of the Russian Academy of Sciences, Khabarovsk, Russia
References:
Abstract: We study sequences $\left\{A_n\right\}_{n=-\infty}^{+\infty}$ of elements of an arbitrary field $\mathbb{F}$ that satisfy decompositions of the form
$$ \begin{aligned}& A_{m+n} A_{m-n}=a_1(m) b_1(n)+a_2(m) b_2(n),\\ & A_{m+n+1} A_{m-n}=\tilde a_1(m) \tilde b_1(n)+\tilde a_2(m) \tilde b_2(n), \end{aligned} $$
where $a_1,a_2,b_1,b_2\colon \mathbb{Z}\to\mathbb{F}$. We prove some results concerning the existence and unique ness of such sequences. The results are used to construct analogs of the Diffie–Hellman and ElGamal cryptographic algorithms. The discrete logarithm problem is considered in the group $(S,+)$, where the set $S$ consists of quadruples $S(n)=(A_{n-1},A_n, A_{n+1}, A_{n+2})$, $n\in\mathbb{Z}$, and $S(n)+S(m)=S(n+m)$.
Keywords: nonlinear recurrence sequences, Somos sequences, public-key cryptography.
Received: 19.01.2023
Revised: 11.05.2023
Accepted: 11.05.2023
English version:
Problems of Information Transmission, 2023, Volume 59, Issue 2, Pages 163–180
DOI: https://doi.org/10.1134/S0032946023020072
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.719.2
Language: Russian
Citation: A. A. Illarionov, “Existence of sequences satisfying bilinear type recurrence relations”, Probl. Peredachi Inf., 59:2 (2023), 102–119; Problems Inform. Transmission, 59:2 (2023), 163–180
Citation in format AMSBIB
\Bibitem{Ill23}
\by A.~A.~Illarionov
\paper Existence of sequences satisfying bilinear type recurrence relations
\jour Probl. Peredachi Inf.
\yr 2023
\vol 59
\issue 2
\pages 102--119
\mathnet{http://mi.mathnet.ru/ppi2400}
\crossref{https://doi.org/10.31857/S0555292323020079}
\edn{https://elibrary.ru/PQMLTO}
\transl
\jour Problems Inform. Transmission
\yr 2023
\vol 59
\issue 2
\pages 163--180
\crossref{https://doi.org/10.1134/S0032946023020072}
Linking options:
  • https://www.mathnet.ru/eng/ppi2400
  • https://www.mathnet.ru/eng/ppi/v59/i2/p102
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ïðîáëåìû ïåðåäà÷è èíôîðìàöèè Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025