|
|
Problemy Peredachi Informatsii, 1999, Volume 35, Issue 3, Pages 40–47
(Mi ppi451)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Coding Theory
Perfect Codes for Metrics Generated by Primitive 2-Error-Correcting Binary BCH Codes
È. M. Gabidulin, J. Simonis
Abstract:
For any positive integer m, a metric on $\mathbb F_2^{2m}$ is considered which is induced by the quasi-perfect $[2^m-1, 2^m-2m-1,5]$ binary BCH code. The isometry group is determined. Constructions of codes are given which are perfect with respect to this metric. In addition, easy decoding methods for these codes are proposed.
Received: 29.09.1998 Revised: 20.04.1999
Citation:
È. M. Gabidulin, J. Simonis, “Perfect Codes for Metrics Generated by Primitive 2-Error-Correcting Binary BCH Codes”, Probl. Peredachi Inf., 35:3 (1999), 40–47; Problems Inform. Transmission, 35:3 (1999), 224–230
Linking options:
https://www.mathnet.ru/eng/ppi451 https://www.mathnet.ru/eng/ppi/v35/i3/p40
|
|