Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2000, Volume 36, Issue 1, Pages 26–47 (Mi ppi468)  

This article is cited in 10 scientific papers (total in 10 papers)

Communication Network Theory

Nonergodicity of a Queueing Network under Nonstability of Its Fluid Model

A. A. Pukhal'skii, A. N. Rybko
References:
Abstract: We study ergodicity properties of open queueing networks for which the associated fluid models have trajectories that go to infinity. It is proved that if a trajectory is stable in a certain sense and grows to infinity linearly, then the underlying stochastic process is nonergodic. The result applies to the basic nontrivial examples of nonergodic networks found by Bramson, and Rybko and Stolyar. The proof employs some general results from the large deviation theory.
Received: 18.01.1999
Bibliographic databases:
Document Type: Article
UDC: 621.395.74:519.27
Language: Russian
Citation: A. A. Pukhal'skii, A. N. Rybko, “Nonergodicity of a Queueing Network under Nonstability of Its Fluid Model”, Probl. Peredachi Inf., 36:1 (2000), 26–47; Problems Inform. Transmission, 36:1 (2000), 23–41
Citation in format AMSBIB
\Bibitem{PukRyb00}
\by A.~A.~Pukhal'skii, A.~N.~Rybko
\paper Nonergodicity of a~Queueing Network under Nonstability of Its Fluid Model
\jour Probl. Peredachi Inf.
\yr 2000
\vol 36
\issue 1
\pages 26--47
\mathnet{http://mi.mathnet.ru/ppi468}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1746007}
\zmath{https://zbmath.org/?q=an:0966.60095}
\transl
\jour Problems Inform. Transmission
\yr 2000
\vol 36
\issue 1
\pages 23--41
Linking options:
  • https://www.mathnet.ru/eng/ppi468
  • https://www.mathnet.ru/eng/ppi/v36/i1/p26
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025