Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1987, Volume 23, Issue 3, Pages 27–38 (Mi ppi813)  

Methods of Signal Processing

Nonparametric Estimation of Functionals of the Derivatives of a Signal Observed in White Gaussian Noise

A. S. Nemirovskii, R. Z. Khas'minskii
Abstract: We consider the estimation of an integral functional of the signal $S$ and its derivatives up to order $p_m$ when the observable quantity is the result of transmission of $S$ through a communication channel with white Gaussian noise of low intensity $\varepsilon^2$. Nonparametric estimators of $S$ and $S^{(k)}$ in this case are known to have variance $\Delta^2\gg\varepsilon^2$. Yet a differentiable functional $F$ often may be estimated asymptotically efficiently with $\Delta^2\asymp\varepsilon^2$. We obtain nearly necessary conditions on the a priori known smoothness of the signal $\beta$, the smoothness of the derivative of the functional $\gamma$ and $p_m$ that ensure asymptotically (for $\varepsilon\to 0$) efficient estimation of $F$. The form of this estimator is given.
Received: 02.04.1985
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.28
Language: Russian
Citation: A. S. Nemirovskii, R. Z. Khas'minskii, “Nonparametric Estimation of Functionals of the Derivatives of a Signal Observed in White Gaussian Noise”, Probl. Peredachi Inf., 23:3 (1987), 27–38; Problems Inform. Transmission, 23:3 (1987), 194–203
Citation in format AMSBIB
\Bibitem{NemKha87}
\by A.~S.~Nemirovskii, R.~Z.~Khas'minskii
\paper Nonparametric Estimation of Functionals of the Derivatives of a~Signal Observed in White Gaussian Noise
\jour Probl. Peredachi Inf.
\yr 1987
\vol 23
\issue 3
\pages 27--38
\mathnet{http://mi.mathnet.ru/ppi813}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=914348}
\zmath{https://zbmath.org/?q=an:0678.62052}
\transl
\jour Problems Inform. Transmission
\yr 1987
\vol 23
\issue 3
\pages 194--203
Linking options:
  • https://www.mathnet.ru/eng/ppi813
  • https://www.mathnet.ru/eng/ppi/v23/i3/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:347
    Full-text PDF :131
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025