Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Seminar on Modern Problems of Complex Analysis (Sadullaev Seminar)
December 20, 2018 12:00–13:00, Tashkent, National University of Uzbekistan, Room A304 (Department of Mathematics)
 


The entrance time for circle homeomorphisms with break points

J. J. Karimov

National University of Uzbekistan named after M. Ulugbek, Tashkent

Abstract: We consider the circle homeomorphism $f\in {{C}^{2+\varepsilon }}({{S}^{1}}\backslash \{b\})$, $\varepsilon > 0$, with one break point $b$ and irrational rotation number $\rho ={{\rho }_{f}}=\frac{\sqrt{5}-1}{2}$. Let ${{q}_{n}}$ be the first return time. We fix arbitrary point ${{z}_{0}}\in {{S}^{1}}$. We denote by ${{J}_{n}}({{z}_{0}})$ the $n$-th renormalization interval of ${{z}_{0}}$. Let $\bar{E}_{n}^{(1)}(x)$ be the normalized entrance time function. The distribution function of random variable $\bar{E}_{n}^{(1)}(x)$ to Lebesgue measure $l$ denote by $\Phi _{n}^{(1)}(t)$. We prove that $\Phi _{n}^{(1)}(t)\to \Phi (t)$, $n\to \infty$ for all $t\in {{\mathbb{R}}^{1}}$ and $\Phi_{n}^{(1)}(t)$ is singular on $[0,1]$ w.r.t. Lebesgue measure $l$.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025