Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive

Search
RSS
New in collection






Multidimensional Residues and Tropical Geometry
June 15, 2021 15:30–16:30, Section II, Sochi
 


Set interpolation by plurisubharmonic geodesics

A. Yu. Rashkovskii

University of Stavanger
Supplementary materials:
Adobe PDF 566.8 Kb

Number of views:
This page:291
Video files:22
Materials:29

A. Yu. Rashkovskii



Abstract: Given a pair of compact, non-pluripolar, polynomially convex subsets $K_0$, $K_1$ of a bounded hyperconvex domain $\Omega\subset\Bbb C^n$, we consider a plurisubharmonic geodesic $u_t(z)$, $0<t<1$, between the functions $c_j\, \omega_j(z)$, $j=0,1$, where $c_j$ are positive constants and $\omega_j$ are the extremal functions of the sets $K_j$ relative to $\Omega$: $\omega_j(z)=\sup\{u(z): u\in PSH(\Omega),\ u<0, u|_{K_j}\le-1\}$.
The sets $K_t=\{z\in\Omega: u_t(z)=\min_\Omega u_t\}$ interpolate $K_0$ and $K_1$. For a good choice of the constants $c_j$, the relative capacities $Cap\,(K_t,\Omega)$ are proved to satisfy a stronger version of Brunn-Minkowski type inequality. This is achieved by using linearity of the Monge-Ampère energy functional $\int_\Omega u_t(dd^c u_t)^n$.
When the sets $K_j$ are Reinhardt subsets of the unit polydisk, $K_t$ do not depend on the choice of the constants $c_j$ and are the geometric means of $K_0$ and $K_1$: $K_t=K_0^{1-t}K_1^t$, and their capacities are $n!$ times the covolumes of certain unbounded convex subsets of $\mathbb R_+^n$.

Supplementary materials: Alexander Rashkovskii’s slides.pdf (566.8 Kb)

Language: English

Website: https://zoom.us/j/9544088727?pwd=RnRYeUcrZlhoeVY3TnRZdlE0RUxBQT09

* ID: 954 408 8727, password: residue
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025