Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive

Search
RSS
New in collection






Analysis days in Sirius
October 28, 2021 09:45–10:30, Sochi, online via Zoom at 08:45 CEST (=07:45 BST, =02:45 EDT)
 


On zeroes and poles of Helson zeta function

R. V. Romanov

Saint Petersburg State University

Number of views:
This page:200

Abstract: The structure of poles and zeroes of the Helson zeta function, $ \zeta_\chi (s)= \sum_1^{\infty}\chi(n)n^{-s} $, is studied. In particular, it is shown that two arbitrary disjoint sets in the critical strip $ 21/40 < \Re s < 1 $ not accumulating off the left boundary $ \Re s = 21/40 $ are the sets of zeroes and poles of $ \zeta_\chi $, respectively, for an appropriate choice of the completely multiplicative unimodular function $ \chi $. This is a joint work with I. Bochkov.

Language: English

Website: https://us02web.zoom.us/j/6250951776?pwd=aG5YNkJndWIxaGZoQlBxbWFOWHA3UT09

* ID: 625 095 1776, password: pade
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025