Abstract:
Классические алгебры Ли описывают калибровочные симметрии квантовых систем, однако на уровне корреляционных функций могут возникать новые, неожиданные и замечательные свойства – "скрытые симметрии", которые могут быть описаны с помощью некоторых ассоциативных алгебр с параметрами деформации. На данный момент известно некоторое количество примеров такого явления. Целью моей работы было изучение уже известных пар "модель – скрытая симметрия" и разработка методов для поиска новых примеров. Я расскажу про основные результаты кандидатской диссертации, в которой рассматривалось два примера моделей:
1) матричные модели и бета-ансамбли – аффинные Янгианы;
2) трехмерная теория Черна-Саймонса с калибровочной группой $SU(N)$ – квантовые
группы $U_q(su(N))$.