Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






The Sixth International Conference "Supercomputer Technologies of Mathematical Modelling" (SCTeMM'25)
July 17, 2025 12:50–13:20, Plenary session, Moscow, Steklov Mathematical Institute, Conference hall, 9th floor (Gubkina 8)
 


Краевые задачи теории упругости в областях с тонкими включениями

E.M. Rudoy

Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk

E.M. Rudoy
Photo Gallery




References
  1. Khludnev A., Leugering G. On elastic bodies with thin rigid inclusions and cracks. Math. Methods Appl. Sci. 2010. V. 33. P. 1955–1967.
  2. Popova T. S. Numerical solution of the equilibrium problem for a two-dimensional elastic body with a thin semirigid inclusion. Mathematical Notes of NEFU. 2021. V. 28. P. 51–66.
  3. Lazarev N., Semenova G., Efimova E. Equilibrium problem for an inhomogeneous two-dimensional elastic body with two interacting thin rigid inclusions. Journal of Computational and Applied Mathematics. 2024. V. 4388. 115539.
  4. Furtsev A., Itou H., Rudoy E. Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation. International Journal of Solids and Structures. 2020. V. 182–183. P. 100–110.
  5. Kazarinov N., Rudoy E., Slesarenko V., Shcherbakov V. MMathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion. omputational Mathematics and Mathematical Physics. 2018. V. 58. P. 761–774.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025