Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Probability Techniques in Analysis and Algorithms on Networks
November 28, 2025 16:50–17:25, Section 2, St. Petersburg, St. Petersburg State University, Department of Mathematics and Computer Science (14th Line of Vasilievsky Island, 29b), room 217b
 


Universal frame set for rational functions

A. V. Semenov

Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: For $(\lambda, \mu) \in \mathbb{R}^2$ define a time-frequency shift operator $\pi_{\lambda, \mu} $ on $L^2(\mathbb{R})$ by the rule
$$\pi_{\lambda, \mu} g (t):= e^{2\pi i \lambda t} g(t - \mu), \quad g\in L^2(\mathbb{R}).$$
Now for a fixed $g \in L^2(\mathbb{R})$ and countable $L \subset \mathbb{R}^2$ we define a Gabor system $\mathcal{G}(g, L)$ as follows:
$$\mathcal{G}(g, L) := \{\pi_{\lambda, \mu} g \mid (\lambda, \mu) \in L\}.$$
The system $\mathcal{G}(g,L)$ is a Gabor frame if for some constants $A, B >0$ one has
\begin{equation} A\|f\|^2_2\leq \sum_{(\lambda, \mu) \in L}|(f, \pi_{\lambda, \mu}g)|^2\leq B\|f\|^2_2, \text{ for any } f\in L^2(\mathbb{R}). \end{equation}

Definition. For any $M \in \mathbb{N}$ let $\mathcal{K}_1(M)$ be a class of rational functions of degree $M$, i.e. it has the form
$$g(t) = \sum_{k=1}^{N} {{a_k} \over {(t - i w_k)^{j_k}}}, \text{ where } a_k \in \mathbb{C}, w_k \in \mathbb{C} \setminus i\mathbb{R} \text{ and } \sum_{k=1}^N j_k = M,$$
such that
\begin{equation}\label{eq:defK2} \sum_{k=1}^N a_k e^{2\pi w_k t} {{(2\pi i)^{j_k-1}} \over {(j_k-1)!}} t^{j_k-1} \ne 0 \text{ for any } t <0. \end{equation}

For example, if all the poles of $g$ lie in the upper half-plane, then (\ref{eq:defK2}) is equivalent to the simple condition
\begin{equation} \widehat{g}(t) \ne 0 \text{ for any } t >0. \end{equation}

Definition. For a set $L$ its upper density $D(\Lambda)$ is defined by the formula
$$D(\Lambda) = \lim_{a \to \infty} \sup_{R \in \mathbb{R}} {{\# \{x \in \Lambda \mid x \in [R, R+a]\}} \over {a}}.$$

In the talk we discuss the following universal result:
Theorem 1. For any $\varepsilon >0$ and any $M \in \mathbb{N}$ there exist a set $\Lambda = \Lambda(\varepsilon, M) \subset \mathbb{R}$ of density $D(\Lambda) \leq 1+\varepsilon$ such that the system
$$\mathcal{G}(g, \Lambda\times \mathbb{Z}) := \{e^{2\pi i \lambda t} g(t - n) \mid (\lambda, n) \in \Lambda \times \mathbb{Z}\}$$
is a frame in $L^2(\mathbb{R})$ for any rational function $g \in \mathcal{K}(M)$.

Language: English

* Zoom ID: 812-916-426, Password: mkn
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025