Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1974, Volume 1, Number 4, Pages 899–907 (Mi qe6794)  

Propagation, conversion, and generation of surface light waves in thin films with harmonically modulated refractive indices

V. A. Kiselev
Abstract: A general theory of the conversion of surface H waves is developed for a thin-film sinusoidal amplitude-phase diffraction grating. A detailed analysis is made of the resonant reflection of a surface wave in the first order of the diffraction theory subject to the Bragg conditions. Conditions for the self-excitation of H waves are formulated for a thin-film laser with a distributed feedback based on the resonant reflection in a three-dimensional diffraction grating.
Received: 07.12.1973
English version:
Soviet Journal of Quantum Electronics, 1974, Volume 4, Issue 4, Pages 495–499
DOI: https://doi.org/10.1070/QE1974v004n04ABEH006794
Document Type: Article
UDC: 621.371
PACS: 42.82.Et, 42.79.Dj, 42.79.Wc, 42.25.Gy, 42.25.Fx
Language: Russian


Citation: V. A. Kiselev, “Propagation, conversion, and generation of surface light waves in thin films with harmonically modulated refractive indices”, Kvantovaya Elektronika, 1:4 (1974), 899–907 [Sov J Quantum Electron, 4:4 (1974), 495–499]
Linking options:
  • https://www.mathnet.ru/eng/qe6794
  • https://www.mathnet.ru/eng/qe/v1/i4/p899
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025