Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2025, Volume 30, Issue 1, Pages 93–102
DOI: https://doi.org/10.1134/S1560354724580020
(Mi rcd1298)
 

On the Existence of Expanding Attractors with Different Dimensions

Vladislav S. Medvedev, Evgeny V. Zhuzhoma

National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, 603005 Nizhny Novgorod, Russia
References:
Abstract: We prove that an $n$-sphere $\mathbb{S}^n$, $n\geqslant 2$, admits structurally stable diffeomorphisms $\mathbb{S}^n\to\mathbb{S}^n$ with nonorientable expanding attractors of any topological dimension $d\in\{1,\ldots,[\frac{n}{2}]\}$ where $[x]$ is the integer part of $x$. In addition, any $n$-sphere $\mathbb{S}^n$, $n\geqslant 3$, admits axiom A diffeomorphisms $\mathbb{S}^n\to\mathbb{S}^n$ with orientable expanding attractors of any topological dimension $d\in\{1,\ldots,[\frac{n}{3}]\}$. We prove that an $n$-torus $\mathbb{T}^n$, $n\geqslant 2$, admits structurally stable diffeomorphisms $\mathbb{T}^n\to\mathbb{T}^n$ with orientable expanding attractors of any topological dimension $d\in\{1,\ldots,n-1\}$. We also prove that, given any closed $n$-manifold $M^n$, $n\geqslant 2$, and any $d\in\{1,\ldots,[\frac{n}{2}]\}$, there is an axiom A diffeomorphism $f: M^n\to M^n$ with a $d$-dimensional nonorientable expanding attractor. Similar statements hold for axiom A flows.
Keywords: axiom A systems, basic set, expanding attractor
Funding agency Grant number
HSE Basic Research Program
This work is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).
Received: 26.07.2024
Accepted: 22.11.2024
Document Type: Article
MSC: 58C30, 37D15
Language: English
Citation: Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “On the Existence of Expanding Attractors with Different Dimensions”, Regul. Chaotic Dyn., 30:1 (2025), 93–102
Citation in format AMSBIB
\Bibitem{MedZhu25}
\by Vladislav S. Medvedev, Evgeny V. Zhuzhoma
\paper On the Existence of Expanding Attractors with Different Dimensions
\jour Regul. Chaotic Dyn.
\yr 2025
\vol 30
\issue 1
\pages 93--102
\mathnet{http://mi.mathnet.ru/rcd1298}
\crossref{https://doi.org/10.1134/S1560354724580020}
Linking options:
  • https://www.mathnet.ru/eng/rcd1298
  • https://www.mathnet.ru/eng/rcd/v30/i1/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025