|
Special Issue: Celebrating the 75th Birthday of V.V. Kozlov (Issue Editors: Sergey Bolotin, Vladimir Dragović, and Dmitry Treschev)
The Lorentzian Anti-de Sitter Plane
Anton Z. Alia, Yuri L. Sachkovb a Lomonosov Moscow State University,
Leninskie Gory 1, 119991 Moscow, Russia
b Ailamazyan Program Systems Institute RAS, RUDN University,
152020 Pereslavl-Zalessky, Russia
Abstract:
In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane
is studied. Using methods of geometric control theory and differential geometry, we describe
the reachable set, investigate the existence of Lorentzian length maximizers, compute extremal
trajectories, construct an optimal synthesis, characterize Lorentzian distance and spheres, and
describe the Lie algebra of Killing vector fields.
Keywords:
Lorentzian geometry, geometric control theory, optimal control
Received: 21.04.2025 Accepted: 15.07.2025
Citation:
Anton Z. Ali, Yuri L. Sachkov, “The Lorentzian Anti-de Sitter Plane”, Regul. Chaotic Dyn., 30:4 (2025), 504–537
Linking options:
https://www.mathnet.ru/eng/rcd1318 https://www.mathnet.ru/eng/rcd/v30/i4/p504
|
|