Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2025, Volume 30, Issue 4, Pages 538–549
DOI: https://doi.org/10.1134/S1560354725040057
(Mi rcd1319)
 

Special Issue: Celebrating the 75th Birthday of V.V. Kozlov (Issue Editors: Sergey Bolotin, Vladimir Dragović, and Dmitry Treschev)

Singular KAM Theory for Convex Hamiltonian Systems

Santiago Barbieria, Luca Biascob, Luigi Chierchiab, Davide Zaccariac

a Departament d’Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, 6 Campus Montilivi, 17003 Girona, Spain
b Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy
c Department of Mathematics, University of Toronto, 40 St George St., M5S 2E4 Toronto, Canada
References:
Abstract: In this note, we briefly discuss how the singular KAM theory of [7] — which was worked out for the mechanical case $\frac12 |y|^2+\varepsilon f(x)$ — can be extended to convex real-analytic nearly integrable Hamiltonian systems with Hamiltonian in action-angle variables given by $h(y)+\varepsilon f(x)$ with $h$ convex and $f$ generic.
Keywords: nearly integrable Hamiltonian systems, convex Hamiltonians, measure of invariant tori, simple resonances, Arnold – Kozlov – Neishtadt conjecture, singular KAM theory
Funding agency
L. Biasco and L. Chierchia were supported by grant NRR-M4C2-I1.1-PRIN 2022-PE1-Stability in Hamiltonian dynamics and beyond-F53D23002730006-Financed by E.U.–NextGenerationEU. Santiago Barbieri was supported by the Juan de la Cierva Postdoctoral Grant JDC2023-052632-I funded by the Spanish National Agency for Research (Agencia Estatal de Investigación).
Received: 18.06.2025
Accepted: 18.07.2025
Document Type: Article
Language: English
Citation: Santiago Barbieri, Luca Biasco, Luigi Chierchia, Davide Zaccaria, “Singular KAM Theory for Convex Hamiltonian Systems”, Regul. Chaotic Dyn., 30:4 (2025), 538–549
Citation in format AMSBIB
\Bibitem{BarBiaChi25}
\by Santiago Barbieri, Luca Biasco, Luigi Chierchia, Davide Zaccaria
\paper Singular KAM Theory for Convex Hamiltonian Systems
\jour Regul. Chaotic Dyn.
\yr 2025
\vol 30
\issue 4
\pages 538--549
\mathnet{http://mi.mathnet.ru/rcd1319}
\crossref{https://doi.org/10.1134/S1560354725040057}
Linking options:
  • https://www.mathnet.ru/eng/rcd1319
  • https://www.mathnet.ru/eng/rcd/v30/i4/p538
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025