Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 1, Pages 19–36
DOI: https://doi.org/10.1134/S1560354715010025
(Mi rcd55)
 

This article is cited in 25 scientific papers (total in 25 papers)

Kustaanheimo–Stiefel Regularization and the Quadrupolar Conjugacy

Lei Zhao

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
Full-text PDF Citations (25)
References:
Abstract: In this article, we first present the Kustaanheimo–Stiefel regularization of the spatial Kepler problem in a symplectic and quaternionic approach. We then establish a set of action-angle coordinates, the so-called LCF coordinates, of the Kustaanheimo–Stiefel regularized Kepler problem, which is consequently used to obtain a conjugacy relation between the integrable approximating “quadrupolar” system of the lunar spatial three-body problem and its regularized counterpart. This result justifies the study of Lidov and Ziglin [14] of the quadrupolar dynamics of the lunar spatial three-body problem near degenerate inner ellipses.
Keywords: Kustaanheimo–Stiefel regularization, quaternions, symplectic reduction, secular systems, quadrupolar system.
Received: 06.12.2013
Bibliographic databases:
Document Type: Article
MSC: 70F07, 70F16, 37J15
Language: English
Citation: Lei Zhao, “Kustaanheimo–Stiefel Regularization and the Quadrupolar Conjugacy”, Regul. Chaotic Dyn., 20:1 (2015), 19–36
Citation in format AMSBIB
\Bibitem{Zha15}
\by Lei Zhao
\paper Kustaanheimo–Stiefel Regularization and the Quadrupolar Conjugacy
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 1
\pages 19--36
\mathnet{http://mi.mathnet.ru/rcd55}
\crossref{https://doi.org/10.1134/S1560354715010025}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3304935}
\zmath{https://zbmath.org/?q=an:06468420}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20...19Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349024900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944180789}
Linking options:
  • https://www.mathnet.ru/eng/rcd55
  • https://www.mathnet.ru/eng/rcd/v20/i1/p19
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025