Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 4, Pages 333–362
DOI: https://doi.org/10.1070/RD2005v010n04ABEH000319
(Mi rcd714)
 

This article is cited in 24 scientific papers (total in 24 papers)

Bicentennial of C.G. Jacobi

Mathematical analysis of the tippe top

S. Rauch-Wojciechowski, M. Sköeldstam, T. Glad

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
Full-text PDF Citations (24)
Abstract: A rigorous, and possibly complete analysis of the phase space picture of the tippe top solutions for all initial conditions when the top does not jump and all relations between parameters $\alpha$ and $\gamma$, is for the first time presented here. It is based on the use the Jellett's integral of motion $\lambda$ and the analysis of the energy function. Theorems about stability and attractivity of the asymptotic manifold are proved in detail. Lyapunov stability of (periodic) asymptotic solutions with respect to arbitrary perturbations is shown.
Keywords: tippe top, rigid body, stability, Jellett's integral.
Received: 27.01.2005
Accepted: 16.06.2005
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Rauch-Wojciechowski, M. Sköeldstam, T. Glad, “Mathematical analysis of the tippe top”, Regul. Chaotic Dyn., 10:4 (2005), 333–362
Citation in format AMSBIB
\Bibitem{RauSkoGla05}
\by S.~Rauch-Wojciechowski, M. Sk\"oeldstam, T. Glad
\paper Mathematical analysis of the tippe top
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 4
\pages 333--362
\mathnet{http://mi.mathnet.ru/rcd714}
\crossref{https://doi.org/10.1070/RD2005v010n04ABEH000319}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2191366}
\zmath{https://zbmath.org/?q=an:1133.70309}
Linking options:
  • https://www.mathnet.ru/eng/rcd714
  • https://www.mathnet.ru/eng/rcd/v10/i4/p333
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025