Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2000, Volume 5, Issue 1, Pages 33–52
DOI: https://doi.org/10.1070/RD2000v005n01ABEH000122
(Mi rcd860)
 

This article is cited in 20 scientific papers (total in 20 papers)

150th anniversary of S.V. Kovalevskaya

A Bi-Hamiltonian Theory for Stationary KDV Flows and Their Separability

G. Falquia, F. Magrib, M. Pedronic, J. P. Zubellid

a SISSA, Via Beirut 2/4, I – 34014 Trieste, Italy
b Dipartimento di Matematica e Applicazioni, Università di Milano – Bicocca, Via degli Arcimboldi 8, I – 20126 Milano, Italy
c Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, I – 16146 Genova, Italy
d IMPA, Est. D. Castorina 110, Rio de Janeiro, RJ 22460, Brazil
Full-text PDF Citations (20)
Abstract: We present a fairly new and comprehensive approach to the study of stationary flows of the Korteweg–de Vries hierarchy. They are obtained by means of a double restriction process from a dynamical system in an infinite number of variables. This process naturally provides us with a Lax representation of the flows, which is used to find their bi-Hamiltonian formulation. Then we prove the separability of these flows making use of their bi-Hamiltonian structure, and we show that the variables of separation are supplied by the Poisson pair.
Received: 17.11.1999
Bibliographic databases:
Document Type: Personalia
MSC: 58F07, 35Q53
Language: English
Citation: G. Falqui, F. Magri, M. Pedroni, J. P. Zubelli, “A Bi-Hamiltonian Theory for Stationary KDV Flows and Their Separability”, Regul. Chaotic Dyn., 5:1 (2000), 33–52
Citation in format AMSBIB
\Bibitem{FalMagPed00}
\by G. Falqui, F. Magri, M. Pedroni, J. P. Zubelli
\paper A Bi-Hamiltonian Theory for Stationary KDV Flows and Their Separability
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 1
\pages 33--52
\mathnet{http://mi.mathnet.ru/rcd860}
\crossref{https://doi.org/10.1070/RD2000v005n01ABEH000122}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1784728}
\zmath{https://zbmath.org/?q=an:0947.37048}
Linking options:
  • https://www.mathnet.ru/eng/rcd860
  • https://www.mathnet.ru/eng/rcd/v5/i1/p33
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025