Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1998, Volume 3, Issue 2, Pages 92–98
DOI: https://doi.org/10.1070/RD1998v003n02ABEH000074
(Mi rcd942)
 

Singular orbits of coadjoint action of Lie groups

A. M. Boyarsky
Abstract: The method is proposed of the explicit embedding of the some types of the singular orbits of the adjoint action of the some classical Lie groups in the corresponding (co)algebras as the level surfaces of the special polynomials. In fact, orbits of types $SO(2n) / SO(2k) \times SO(2)^{n-k}$, $SO(2n+1)/SO(2k+1) \times SO(2)^{n-k}$, $ E(2n-1)/R \times SO(2k) \times SO(2)^{n-k-1}$, $E(2n)/R \times SO(2k+1) \times SO(2)^{n-k-1}$, $(S)U(n)/(S)(U(2k) \times U(2)^{n-k})$ can be embeded by the method. Particularly, the minimal-dimensional orbits can be described as intersections of quadrics.
Received: 17.09.1997
Bibliographic databases:
Document Type: Article
MSC: 22D20
Language: English
Citation: A. M. Boyarsky, “Singular orbits of coadjoint action of Lie groups”, Regul. Chaotic Dyn., 3:2 (1998), 92–98
Citation in format AMSBIB
\Bibitem{Boy98}
\by A.~M.~Boyarsky
\paper Singular orbits of coadjoint action of Lie groups
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 2
\pages 92--98
\mathnet{http://mi.mathnet.ru/rcd942}
\crossref{https://doi.org/10.1070/RD1998v003n02ABEH000074}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1693490}
\zmath{https://zbmath.org/?q=an:0914.22010}
Linking options:
  • https://www.mathnet.ru/eng/rcd942
  • https://www.mathnet.ru/eng/rcd/v3/i2/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025