Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2025, Volume 80, Issue 2, Pages 335–337
DOI: https://doi.org/10.4213/rm10173e
(Mi rm10173)
 

Brief communications

On the intersection of finitely generated varieties of monoids

E. W. H. Lee

Nova Southeastern University, Fort Lauderdale, FL, USA
References:

Presented: S. K. Lando
Accepted: 11.01.2024
Published: 20.06.2025
Bibliographic databases:
Document Type: Article
MSC: 20M07
Language: English
Original paper language: English

By the theorem of Oates and Powell [1], the variety $\langle G \rangle$ generated by any finite group $G$ is a Cross variety. It follows that the intersection $\langle G_1 \rangle \cap \langle G_2 \rangle$ of varieties generated by any finite groups $G_1$ and $G_2$ is finitely generated. But this result does not hold for more general algebras. For instance, the intersection $\langle S_1 \rangle_{\mathsf{sem}} \cap \langle S_2 \rangle_{\mathsf{sem}}$ of varieties of semigroups generated by the multiplicative matrix semigroups

$$ \begin{equation*} S_1=\biggl\{\begin{bmatrix}0&0\\0&0\end{bmatrix}, \begin{bmatrix}0&1\\0&0\end{bmatrix}, \begin{bmatrix}1&0\\0&1\end{bmatrix}\biggr\} \quad\text{and}\quad S_2=\biggl\{\begin{bmatrix}0&0\\0&0\end{bmatrix}, \begin{bmatrix}1&0\\0&0\end{bmatrix}, \begin{bmatrix}0&1\\0&0\end{bmatrix}, \begin{bmatrix}0&0\\0&1\end{bmatrix}\biggr\} \end{equation*} \notag $$
is non-finitely generated ([2], Theorem 1.7). Given how similar monoids are to semigroups, it is quite surprising that the following question has remained open.

Question 1. Do finite monoids $M_1$ and $M_2$ exist so that the intersection $\langle M_1 \rangle_{\mathsf{mon}} \cap \langle M_2 \rangle_{\mathsf{mon}}$ of varieties of monoids is non-finitely generated?

The main goal of this article is to exhibit finite monoids $M_1$ and $M_2$ to affirmatively answer Question 1. Although this question is concerned with monoids, it makes no difference if it is addressed within the context of semigroups because the intersections $\langle M_1 \rangle_{\mathsf{mon}} \cap \langle M_2 \rangle_{\mathsf{mon}}$ and $\langle M_1\rangle_{\mathsf{sem}}\cap\langle M_2\rangle_{\mathsf{sem}}$ are simultaneously finitely generated; see the appendix. However, due to the large volume of results on semigroups available in the literature, it is more convenient to work with semigroups than with monoids.

Recall that a locally finite variety or algebra is inherently non-finitely based if every locally finite variety containing it is non-finitely based. It turns out that for any finite monoid $M$, the varieties $\langle M \rangle_{\mathsf{mon}}$ and $\langle M \rangle_{\mathsf{sem}}$ are simultaneously inherently non-finitely based ([3], Theorem 4.3). Two important examples of inherently non-finitely based semigroups, due to Sapir [4], are the multiplicative matrix semigroup

$$ \begin{equation*} B_2^1=\biggl\{\begin{bmatrix}0&0\\0&0\end{bmatrix}, \begin{bmatrix}1&0\\0&0\end{bmatrix},\begin{bmatrix}0&1\\0&0\end{bmatrix}, \begin{bmatrix}0&0\\1&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}, \begin{bmatrix}1&0\\0&1\end{bmatrix}\biggr\} \end{equation*} \notag $$
and the Rees quotient $Q$ of the free semigroup $\{x_1,x_2,x_3,\ldots\}^+$ modulo the ideal of all words that are not factors of any of the Zimin words $w_1, w_2, w_3,\ldots$ given by $w_1=x_1$ and $w_n=w_{n-1} x_n w_{n-1}$ for all $n \geqslant 2$. The semigroups $B_2^1$ and $Q$ are aperiodic in the sense that all their subgroups are trivial.

Lemma 2 (Jackson [5], Theorem 1.4). Suppose that $S$ is any finite semigroup that is either aperiodic or of order at most $55$. Then $S$ is inherently non-finitely based if and only if $B_2^1 \in \langle S \rangle_{\mathsf{sem}}$.

Lemma 3 (Sapir [4], Theorem 3A). The variety $\langle Q\rangle_{\mathsf{sem}}$ is the only minimal inherently non-finitely based variety of semigroups that is not generated by groups.

Theorem 4. Let $\mathcal{K}$ be the class of all inherently non-finitely based finite semigroups $K$ such that $B_2^1 \notin \langle K \rangle_{\mathsf{sem}}$. Then for any $K \in \mathcal{K}$, the intersection $\langle B_2^1 \rangle_{\mathsf{sem}} \cap \langle K \rangle_{\mathsf{sem}}$ is non-finitely generated.

Proof. Since every finite group generates a Cross variety of semigroups [1], the class $\mathcal{K}$ does not contain any groups. Therefore, by Lemma 3, the variety $\langle Q \rangle_{\mathsf{sem}}$ is contained in $\langle B_2^1 \rangle_{\mathsf{sem}}$ and $\langle K \rangle_{\mathsf{sem}}$, so that $\langle B_2^1 \rangle_{\mathsf{sem}} \cap \langle K \rangle_{\mathsf{sem}}$ is inherently non-finitely based. Suppose that $\langle B_2^1 \rangle_{\mathsf{sem}} \cap \langle K \rangle_{\mathsf{sem}}= \langle S \rangle_{\mathsf{sem}}$ for some finite semigroup $S$. Then $S$ is inherently non-finitely based. Since $B_2^1$ is aperiodic, $S$ is also aperiodic. It then follows from Lemma 2 that $B_2^1 \in \langle S \rangle_{\mathsf{sem}}$, whence the contradiction $B_2^1 \in \langle K \rangle_{\mathsf{sem}}$ is deduced. $\Box$

Question 1 is thus affirmatively answered by letting $M_1=B_2^1$ and choosing any monoid $M_2$ from $\mathcal{K}$. An example of a monoid in $\mathcal{K}$, due to Volkov and Gol’dberg [6], is the semigroup of $n \times n$ upper triangular matrices over the $q$-element field under usual matrix multiplication, where $n \geqslant 4$ and $q \geqslant 3$. This example has a rather large order of $q^{n(n+1)/2} \geqslant 3^{10}$.

Smaller examples in $\mathcal{K}$ have also been exhibited by Jackson [5]. Specifically, he constructed from any finite centreless group $G$ a monoid $G^* \in \mathcal{K}$ of order $9|G|+2$. Since the dihedral group $D_3 \in \mathcal{K}$ of order $6$ is the smallest centreless group, the monoid $D_3^*$ of order $56$ is the smallest example obtained by his construction. In fact, it follows from Lemma 2 that $56$ is the smallest possible order of a semigroup in $\mathcal{K}$.

Appendix

Lemma 5 (Jackson [7], Lemma 1.1). Suppose that $S$ is any semigroup and $M$ is any monoid such that $S \in \langle M \rangle_{\mathsf{sem}}$. Then the smallest monoid $S^1$ containing $S$ belongs to $\langle M \rangle_{\mathsf{mon}}$.

Theorem 6. Let $\mathcal{M}=\langle M_1 \rangle_{\mathsf{mon}} \cap \langle M_2 \rangle_{\mathsf{mon}}$ and $\mathcal{S}= \langle M_1 \rangle_{\mathsf{sem}} \cap \langle M_2 \rangle_{\mathsf{sem}}$, where $M_1$ and $M_2$ are any monoids.

Consequently, the varieties $\mathcal{M}$ and $\mathcal{S}$ are simultaneously finitely generated.

Proof. (i) Suppose that $\mathcal{M}=\langle M \rangle_{\mathsf{mon}}$ for some monoid $M$. If $S \in \mathcal{S}$, then by Lemma 5, one has $S^1 \in \mathcal{M} \subseteq \langle M \rangle_{\mathsf{sem}}$, whence $S \in \langle M \rangle_{\mathsf{sem}}$. Thus $\mathcal{S} \subseteq \langle M \rangle_{\mathsf{sem}}$. Conversely, if $S \in \langle M \rangle_{\mathsf{sem}}$, then by Lemma 5, one has $S^1 \in \langle M \rangle_{\mathsf{mon}}= \mathcal{M} \subseteq \mathcal{S}$, whence $S \in \mathcal{S}$. Therefore, $\langle M \rangle_{\mathsf{sem}} \subseteq \mathcal{S}$.

(ii) Suppose that $\mathcal{S}=\langle S \rangle_{\mathsf{sem}}$ for some semigroup $S$. Since $S \in \mathcal{S}$ by assumption, $\langle S^1 \rangle_{\mathsf{mon}} \subseteq \mathcal{M}$ by Lemma 5. Conversely, since $\mathcal{M} \subseteq \mathcal{S} \subseteq \langle S^1 \rangle_{\mathsf{sem}}$ by assumption, it follows from Lemma 5 that $\mathcal{M} \subseteq \langle S^1 \rangle_{\mathsf{mon}}$. $\Box$


Bibliography

1. S. Oates and M. B. Powell, J. Algebra, 1:1 (1964), 11–39  crossref  mathscinet  zmath
2. E. W. H. Lee, Advances in the theory of varieties of semigroups, Front. Math., Birkhäuser/Springer, Cham, 2023, xv+287 pp.  crossref  mathscinet  zmath
3. M. Jackson and E. W. H. Lee, Trans. Amer. Math. Soc., 370:7 (2018), 4785–4812  crossref  mathscinet  zmath
4. M. V. Sapir, Math. USSR-Sb., 61:1 (1988), 155–166  mathnet  crossref  mathscinet  zmath  adsnasa
5. M. Jackson, Semigroup Forum, 64:2 (2002), 297–324  crossref  mathscinet  zmath
6. M. V. Volkov and I. A. Gol'dberg, Math. Notes, 73:4 (2003), 474–481  mathnet  crossref  mathscinet  zmath
7. M. Jackson, Structural theory of automata, semigroups, and universal algebra, NATO Sci. Ser. II Math. Phys. Chem., 207, Springer, Dordrecht, 2005, 159–167  crossref  mathscinet  zmath

Citation: E. W. H. Lee, “On the intersection of finitely generated varieties of monoids”, Russian Math. Surveys, 80:2 (2025), 335–337
Citation in format AMSBIB
\Bibitem{Lee25}
\by E.~W.~H.~Lee
\paper On the intersection of finitely generated varieties of monoids
\jour Russian Math. Surveys
\yr 2025
\vol 80
\issue 2
\pages 335--337
\mathnet{http://mi.mathnet.ru/eng/rm10173}
\crossref{https://doi.org/10.4213/rm10173e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4920931}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025RuMaS..80..335L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001519777000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105012154275}
Linking options:
  • https://www.mathnet.ru/eng/rm10173
  • https://doi.org/10.4213/rm10173e
  • https://www.mathnet.ru/eng/rm/v80/i2/p165
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025