Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2025, Volume 80, Issue 2, Pages 338–340
DOI: https://doi.org/10.4213/rm10237e
(Mi rm10237)
 

Brief communications

Universal matrix Capelli identity

M. R. Zaitsev

National Research University Higher School of Economics, Moscow, Russia
References:

Presented: V. M. Buchstaber
Accepted: 28.02.2025
Published: 20.06.2025
Bibliographic databases:
Document Type: Article
MSC: 17B37, 81R50
Language: English
Original paper language: Russian

1.

In this note we present the universal matrix Capelli identity in the reflection equation algebra $M(R)$ associated with an arbitrary Hecke $R$-matrix.

Theorem 1. The universal quantum matrix Capelli identity holds:

$$ \begin{equation} \widehat L_{\bar{1}}\biggl(\widehat L_{\bar{2}}+ \frac{J_{2}^{-1}-1}{q-q^{-1}}\biggr) \cdots \biggl(\widehat L_{\bar{n}}+ \frac{J_{n}^{-1}-1}{q-q^{-1}}\biggr)=M_{\bar{1}}\cdots M_{\bar{n}} D_{\bar{n}} \cdots D_{\bar{1}} J_{1}^{-1} \cdots J_{n}^{-1}. \end{equation} \tag{1} $$

Identity (1) involves the matrices $M$ and $D$ , which are quantum analogues of the matrix of variables and the matrix of derivatives, respectively. The matrix $ \widehat L=MD$ is a quantum analogue of the matrix of generators of the universal enveloping algebra $U({\mathfrak{gl}}_{(M|N)})$. The elements $J_i$ denote the $R$-matrix images of Jucys–Murphy elements of the Hecke algebra $\mathbb{H}_n(q)$.

2.

For any matrix $A \in \operatorname{Mat}_{N \times N}(\mathbb{C}) \otimes U$ with coefficients in an arbitrary vector space $U$ we use the notation

$$ \begin{equation*} A_i=\operatorname{Id}_{\mathbb{C}^N} \otimes\operatorname{Id}_{\mathbb{C}^N} \otimes \cdots\otimes\underset{i}{A}\otimes \cdots\otimes \operatorname{Id}_{\mathbb{C}^N}\in \operatorname{Mat}_{N \times N}(\mathbb{C})^{\otimes k}\otimes U. \end{equation*} \notag $$

The reflection equation algebra $M(R)$ is the unital associative algebra generated by $N^2$ generators $m_i^j$, which we combine into a matrix $M=\|m_i^j\|_{1\leqslant i,j \leqslant N}$ subject to the reflection equation:

$$ \begin{equation} R_{12}M_{\bar{1}} M_{\bar{2}}= M_{\bar{1}} M_{\bar{2}}R_{12}; \quad M_{\bar{1}}=M_1\quad\text{and}\quad M_{\bar{k}}=R_{k-1\,k}M_{\overline{k-1}}R_{k-1\,k}, \quad k>1. \end{equation} \tag{2} $$
Here $R \in \operatorname{Mat}_{N \times N}(\mathbb{C})^{\otimes 2}$ is the Hecke $R$-matrix, that is, $R_{12}R_{23}R_{12}=R_{23}R_{12}R_{23}$, $R^2=1+(q-q^{-1}) R$, $q \in \mathbb{C}\setminus \{0,\pm 1\}$. The parameter $q$ is generic: $q^{k} \ne 1$ for any $k \in \mathbb{Z}_{>0}$. Introducing the new matrix $\widehat L=(1-M)/(q-q^{-1})$ into (2) we obtain
$$ \begin{equation} \widehat L_1R_{12}\widehat L_1R_{12}-R_{12}\widehat L_{1}R_{12}\widehat L_{1}= \widehat L_{1} R_{12}-R_{12} \widehat L_{1}. \end{equation} \tag{3} $$
The algebra $M(R)$ is embedded into the quantum Weyl algebra $W(R)$, which is the quotient of the free product of two reflection equation algebras, $M(R)$ and $D(R^{-1})$ (in the definition of the latter algebra, $R$ is replaced by $R^{-1}$), modulo the relation $D_1 M_{\bar{2}}= R_{12}^{-1}+M_{\bar{2}}D_1 R_{12}^{-2}$. It is known (see [1]) that the matrix $\widehat L=MD$ satisfies the relation (3), and thus we have a representation of the reflection equation algebra (3) by quantum analogues of vector fields. In this setting, the Jucys–Murphy elements entering (1) are defined by $J_1=1$ and $J_k=R_{k-1\,k} J_{k-1} R_{k-1\,k}$, $k >1$.

3.

Let $L=\|L_i^j\|_{1 \leqslant i,j \leqslant N}$ be the matrix composed of the generators of the algebra $U({\mathfrak{gl}}_{N})$, and let $P_{12}$ be the permutation matrix with entries $P_{kl}^{mn}=\delta_k^n\, \delta_l^m$, $ 1\leqslant k,l,m,n\leqslant N$. In terms of the matrix $L$, the relations in the universal enveloping algebra $U({\mathfrak{gl}}_N)$ can be written in the matrix form: $L_1 L_2-L_2 L_1= L_1 P_{12}-P_{12} L_1$. In particular, for the Drinfeld–Jimbo $R$-matrix the algebra defined by (3) is a deformation of the universal enveloping algebra $U({\mathfrak{gl}}_N)$. Moreover, in the case when the $R$-matrix is a deformation of the super-permutation $P_{M|N}$, the algebra $M(R)$ is a deformation of $U({\mathfrak{gl}}_{(M|N)})$.

Consider the Weyl algebra $W_N$ generated by the entries of the matrices $X$ and $D$, where $X=\|x_i^j\|_{1 \leqslant i,j \leqslant N}$ and $D = \|\partial_i^j\|_{1 \leqslant i,j \leqslant N}$, $\partial_i^j = \frac{\partial}{\partial x_j^i}$. The relations in $W_N$ are $X_1 X_2=X_2 X_1$, $D_1 D_2=D_2 D_1$, and $D_1 X_2=X_2 D_1+P_{12}$. The algebra $U({\mathfrak{gl}}_N)$ is embedded into the Weyl algebra by the homomorphism that takes elements of $L$ to the corresponding elements of the matrix $XD$. The universal (not quantum) matrix Capelli identity in terms of $L=XD$ takes the form

$$ \begin{equation*} L_{1}(L_{2}-j_2) \cdots (L_{n}-j_n)=X_{1} \cdots X_{n} D_{1} \cdots D_{n}, \end{equation*} \notag $$
where the $j_k=\sum_{i=1}^{k-1} P_{i k}$ represent the images of Jucys–Murphy elements of the group algebra of the symmetric group. As an immediate consequence, we derive Capelli’s identity for quantum immanants (introduced by Okounkov in [2]):
$$ \begin{equation} \operatorname{Tr}_{(1 \dots n)}\bigl(L_1 (L_2-c(2)) \cdots (L_n-c(n)) P_{ii}^{\lambda}\bigr)=\operatorname{Tr}_{(1 \dots n)} \bigl(X_1 \cdots X_n D_1 \cdots D_n P_{ii}^{\lambda}\bigr). \end{equation} \tag{4} $$
Here $P_{ii}^{\lambda}$ is a primitive idempotent of the group algebra of the symmetric group that corresponds to the standard Young tableau of the form $\lambda$ with index $i$ in any numbering, and $c(k)$ denotes the content of the box with index $k$ in this standard tableau. The symbol $\operatorname{Tr}_{(k)}$ represents the partial trace in the $k$th tensor component. Note that both sides of (4) are independent of the index $i$ of the primitive idempotent $P_{ii}^{\lambda}$. A trace-free version of this identity was proposed in [3]. We call the version from [3], as well as all versions in which traces are not used, matrix versions.

4.

We emphasize that for a generic parameter $q$ the Hecke algebra $\mathbb{H}_n(q)$ of type $A_{n-1}$ is semisimple and isomorphic to the group algebra of the symmetric group. In particular, primitive idempotents $E_{ii}^{\lambda}$ of $\mathbb{H}_n(q)$ are in a 1-to-1 correspondence with the standard Young tableaux. The Jucys–Murphy elements act on them by the formula $J_k E_{ii}^{\lambda}=q^{2c(k)} E_{ii}^{\lambda}$.

Multiplying (1) by such an idempotent and using the last relation, we obtain the $q$-deformed identity

$$ \begin{equation} \begin{aligned} \, &\widehat L_{\bar{1}} (\widehat L_{\bar{2}}-q^{-c(2)}[c(2)]_{q})\cdots (\widehat L_{\bar{n}}-q^{-c(n)}[c(n)]_{q}) E_{ii}^{\lambda} \nonumber \\ &\qquad\qquad\qquad=q^{-2(c(1)+\cdots+c(n))}M_{\bar{1}} \cdots M_{\bar{n}}D_{\bar{n}}\cdots D_{\bar{1}} E_{ii}^{\lambda}. \end{aligned} \end{equation} \tag{5} $$
In [1] the quantum matrix Capelli identities (5) were established for the special cases of one-column and one-row Young diagrams. This result was subsequently generalized to arbitrary Young diagrams in [4] for reflection equation algebras associated with Drinfeld–Jimbo $R$-matrices. In this framework quantum immanants were introduced. They are q-analogues of the immanants introduced by Okounkov.

The universal matrix Capelli identity (1) holds universally for all reflection equation algebras, regardless of the form of the $R$-matrix and Young diagrams. If the $R$-matrix admits an $R$-trace, then quantum immanants can explicitly be constructed by applying the $R$-traces $\operatorname{Tr}_{R(12\ldots n)}$ in all tensor components to the left-hand side of (5).


Bibliography

1. D. Gurevich, V. Petrova, and P. Saponov, J. Geom. Phys., 179 (2022), 104606, 7 pp.  crossref  mathscinet  zmath  adsnasa
2. A. Okounkov, Transform. Groups, 1:1-2 (1996), 99–126  crossref  mathscinet  zmath
3. A. Okounkov, Internat. Math. Res. Notices, 1996:17 (1996), 817–839  crossref  mathscinet  zmath
4. Naihuan Jing, Ming Liu, and A. Molev, The $q$-immanants and higher quantum Capelli identities, 2024, 19 pp., arXiv: 2408.09855v2

Citation: M. R. Zaitsev, “Universal matrix Capelli identity”, Russian Math. Surveys, 80:2 (2025), 338–340
Citation in format AMSBIB
\Bibitem{Zai25}
\by M.~R.~Zaitsev
\paper Universal matrix Capelli identity
\jour Russian Math. Surveys
\yr 2025
\vol 80
\issue 2
\pages 338--340
\mathnet{http://mi.mathnet.ru/eng/rm10237}
\crossref{https://doi.org/10.4213/rm10237e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4920932}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025RuMaS..80..338Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001519777000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105012135345}
Linking options:
  • https://www.mathnet.ru/eng/rm10237
  • https://doi.org/10.4213/rm10237e
  • https://www.mathnet.ru/eng/rm/v80/i2/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025