Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2025, Volume 80, Issue 2, Pages 341–343
DOI: https://doi.org/10.4213/rm10240e
(Mi rm10240)
 

Brief communications

Asymptotic properties of polynomials defined by shifted orthogonality conditions

S. P. Suetin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Funding agency Grant number
Russian Science Foundation 24-11-00196
This work was supported by the Russian Science Foundation under grant no. 24-11-00196, https://rscf.ru/en/project/24-11-00196/.

Presented: V. V. Kozlov
Accepted: 12.03.2025
Published: 20.06.2025
Bibliographic databases:
Document Type: Article
MSC: 33C45
Language: English
Original paper language: Russian

1.

Let $\rho$ be a positive Borel measure with support $E$ consisting of several intervals of the real line, $E=\bigsqcup_{j=1}^p E_j$, and such that $\rho'(x):=d\rho/dx>0$ almost everywhere on $E$.  Let $f$ be a complex-valued function in $L_\rho^2(E)$, and let the polynomials $Q_n(x)=Q_n(x;f)$, $\deg Q_n\leqslant n$, be defined by the following ‘shifted’ orthogonality conditions:

$$ \begin{equation} \int_E Q_n(x)T_k(x;\rho)f(x)\,d\rho(x)=0,\qquad k=n+1,\dots,2n, \end{equation} \tag{1} $$
where the $T_k(x;\rho)=x^k+\dotsb$, $k=0,1,2,\dots$, are the system of orthogonal polynomials on $E$ with respect to $\rho$. With regard to the asymptotic properties of the $Q_n$, we discuss here two cases: 1) $f=\widehat\sigma$ is a Markov function (2), where $\sigma$ is a positive Borel mesure with support on a real compact set $F=\bigsqcup_{s=1}^q F_s$ such that $\sigma'>0$ almost everywhere on $F$, and we have $\operatorname{conv}(E)\cap\operatorname{conv}(F)=\varnothing$ ($\operatorname{conv}(\,\cdot\,)$ denotes the convex hull of the set under consideration); 2) $f$ is a holomorphic function on $E$ extending from $E$ to a domain $\widehat{\mathbb{C}}\setminus\Sigma$ as a multivalued analytic function, where $\Sigma=\Sigma(f)$, $\#\Sigma<\infty$; we denote the class of such functions by $\mathscr A_E(\Sigma)$.

The following two well-known problems can be reduced to (1). The first arises in connection with the investigation of the convergence of so-called linear Padé approximants of orthogonal expansions [3], and the second in connection with the asymptotic properties of the Hermite–Padé polynomials of the first type for a set of functions $[f_0,f_1,f_2]$, where $f_0 \equiv 1$, and the pair $f_1$, $f_2$ forms a Nikishin system [7], [5]. It was shown in [9] that the two problems are closely connected.

As usual, the problem of the asymptotic properties of polynomials defined by orthogonality conditions has two components, a geometric and an analytic one. In the framework of this approach, first we must find a relevant $S$-compact set corresponding to the problem under consideration [8], [6]. After that the problem of the asymptotic behaviour of orthogonal polynomials itself is solved by the Gonchar–Rakhmanov–Stahl method ($\operatorname{GRS}$-method) [10], [2], on the basis of the properties of the $S$-compact set we have found.

2.

In the first case, when

$$ \begin{equation} f(z)=\widehat{\sigma}(z):=\int_F\frac{d\sigma(x)}{z-x}\,,\qquad z\in\widehat{\mathbb{C}}\setminus F, \end{equation} \tag{2} $$
where $\operatorname{supp}\sigma=F$ (we call this the real case), the $S$-compact set is know a priori: it is equal to the real set $F$. Hence the question of the limiting distribution of the zeros of $Q_n$ is solved in the framework of the standard (real-valued) potential-theoretic equilibrium problems [1], [7].

Given an arbitrary (positive Borel) measure $\nu$, $\operatorname{supp}{\nu}\subset\mathbb{C}$, let

$$ \begin{equation*} V^\nu(z)=-\displaystyle\int\log|z-\zeta|\,d\nu(\zeta), \end{equation*} \notag $$
$z\in\mathbb{C}\setminus\operatorname{supp}{\nu}$, denote the logarithmic potential of $\nu$. Let $g_E(\zeta,z)$, $z,\zeta\in D:=\widehat{\mathbb{C}}\setminus{E}$, be the Green’s function for the domain $D$ with singularity at $\zeta=z$, and
$$ \begin{equation*} G_E^\nu(z):=\displaystyle\int g_E(\zeta,z)\,d\nu(\zeta) \end{equation*} \notag $$
be the corresponding Green’s potential of $\nu$. There exists [4] a unique probability measure $\lambda_F$ with support on $F$, $\lambda_F\in M_1(F)$, such that $3V^{\lambda_F}(x)+G^{\lambda_F}_E(x)+ 3g_E(x,\infty)\equiv c_F=\operatorname{const}$, $x\in F$; then $\operatorname{supp}\lambda_F=F$. 

For a polynomial $Q\in\mathbb{C}[z]\setminus\{0\}$ let $\chi(Q)=\sum_{\zeta:Q(\zeta)=0}\delta_\zeta$ denote the zero-counting measure of $Q$ (taking account of multiplicities).

Then the following result holds.

Theorem 1. Let $f=\widehat\sigma$, where $\sigma'>0$ almost everywhere on $F$, and let $\operatorname{conv}(E)\cap \operatorname{conv}(F)=\varnothing$. Then the polynomial $Q_n(z;\widehat\sigma)$ has degree precisely $n$ and is uniquely determined by the normalization $Q_n(z)=z^n+\cdots$, all of its zeros are real and lie in the compact set $\operatorname{conv}(F)$. In addition,

$$ \begin{equation} n^{-1}\chi(Q_n)\xrightarrow{*} \lambda_F\quad\textit{as}\ \ n\to\infty. \end{equation} \tag{3} $$

As usual, here we mean by ‘$\xrightarrow{*}$’ weak-$*$ convergence in the space of measures.

Note that when the orthogonality conditions in (1) are standard, rather than shifted, all zeros of the corresponding polynomials lie in the compact set $\operatorname{conv}(E)$, and their limiting distribution is described by the Robin measure for $E$. 

3.

Let $E=[-1,1]$. Then the following result holds.

Theorem 2. Let $f\in\mathscr A_E(\Sigma)$.

(1) Then there exists a pair of compact sets $E^*$, $F^*$ such that: (a) $E^*$ is an analytic arc joining the points $\pm1$, $F^*\cap E=\varnothing$, $E^*\cap F^*=\varnothing$, and $F^*$ is formed by a finite system of analytic arcs; (b) the set $D^*:=\widehat{\mathbb{C}}\setminus{F^*}$ is a domain; (c) $f$ extends to $D^*$ as a single-valued meromorphic function; (d) the set $F^*$ and the corresponding equilibrium measure $\lambda_{F^*}$ satisfying the conditions

$$ \begin{equation*} 3V^{\lambda_{F^*}}(z)+G^{\lambda_{F^*}}_{E^*}(z)+3g_{E^*}(z,\infty)\equiv c_{F^*}=\operatorname{const},\ \ z\in F^*,\ \ \textit{and}\ \ \operatorname{supp}\lambda_{F^*}=F^{*}, \end{equation*} \notag $$
have the following $S$-property:
$$ \begin{equation} \begin{aligned} \, &\frac{\partial (3V^{\lambda_{F^*}}+G^{\lambda_{F^*}}_{E^*}+3g_{E^*}(\,\cdot\,,\infty))}{\partial {\rm n}^{+}}(\zeta) \nonumber \\ &\qquad=\frac{\partial(3V^{\lambda_{F^*}}+G^{\lambda_{F^*}}_{E^*}+3g_{E^*}(\,\cdot\,,\infty))}{\partial {\rm n}^{-}}(\zeta),\quad \zeta\in(F^*)^\circ. \end{aligned} \end{equation} \tag{4} $$

(2) The following convergence holds:

$$ \begin{equation} n^{-1}\chi(Q_n(\,\cdot\,;f))\xrightarrow{*}\lambda_{F^*}\quad\textit{as} \ \ n\to\infty. \end{equation} \tag{5} $$

In (4) we mean by $(F^*)^\circ$ the union of the open arcs whose closures form $F^*$, and $\partial/\partial {\rm n}^{\pm}$ are the derivatives in the direction of the outward normal to $\zeta\in (F^*)^\circ$, taken from the opposite sides of $F^*$.


Bibliography

1. A. A. Gonchar and E. A. Rakhmanov, Proc. Steklov Inst. Math., 157 (1983), 31–50  mathnet  mathscinet  zmath
2. A. A. Gonchar and E. A. Rakhmanov, Math. USSR-Sb., 62:2 (1989), 305–348  mathnet  crossref  mathscinet  zmath  adsnasa
3. A. A. Gonchar, E. A. Rakhmanov, and S. P. Suetin, Proc. Steklov Inst. Math., 200 (1993), 149–159  mathnet  mathscinet  zmath
4. N. R. Ikonomov and S. P. Suetin, Sb. Math., 215:8 (2024), 1053–1064  mathnet  crossref  mathscinet  zmath  adsnasa
5. V. G. Lysov, Russian Math. Surveys, 79:6 (2024), 1101–1103  mathnet  crossref  mathscinet  adsnasa
6. A. P. Magnus and J. Meinguet, Sb. Math., 215:12 (2024), 1666–1719  mathnet  crossref  mathscinet  adsnasa
7. E. M. Nikishin, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52  mathnet  mathscinet  zmath
8. E. A. Rakhmanov, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239  crossref  mathscinet  zmath
9. E. A. Rakhmanov and S. P. Suetin, Trans. Moscow Math. Soc., 83 (2022), 269–290  mathnet  crossref  mathscinet  zmath
10. H. Stahl, J. Approx. Theory, 91:2 (1997), 139–204  crossref  mathscinet  zmath

Citation: S. P. Suetin, “Asymptotic properties of polynomials defined by shifted orthogonality conditions”, Russian Math. Surveys, 80:2 (2025), 341–343
Citation in format AMSBIB
\Bibitem{Sue25}
\by S.~P.~Suetin
\paper Asymptotic properties of polynomials defined by shifted orthogonality conditions
\jour Russian Math. Surveys
\yr 2025
\vol 80
\issue 2
\pages 341--343
\mathnet{http://mi.mathnet.ru/eng/rm10240}
\crossref{https://doi.org/10.4213/rm10240e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4920933}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025RuMaS..80..341S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001519777000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105012151367}
Linking options:
  • https://www.mathnet.ru/eng/rm10240
  • https://doi.org/10.4213/rm10240e
  • https://www.mathnet.ru/eng/rm/v80/i2/p169
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025