Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2025, Volume 80, Issue 3, Pages 543–545
DOI: https://doi.org/10.4213/rm10250e
(Mi rm10250)
 

Brief communications

Minimal Lefschetz Collections on Isotropic Grassmannians $\operatorname{IGr}(3,2n)$

A. A. Novikov

HSE University
References:
Funding agency Grant number
HSE Basic Research Program
This study was funded within the framework of the HSE University Basic Research Program.

Presented: S. O. Gorchinskiy
Accepted: 15.05.2025
Published: 05.09.2025
Bibliographic databases:
Document Type: Article
MSC: 14M15
Language: English
Original paper language: Russian

Let $\Bbbk$ be an algebraically closed field of characteristic zero, $V$ be a $2n$-dimensional vector space over $\Bbbk$ with a symplectic form $\omega$, and $\operatorname{Sp}(V)$ be the corresponding symplectic group. Consider the Grassmannian of isotropic three-dimensional subspaces $X = \operatorname{IGr}(3,2n)$. Let $\mathcal{O}(1)$ be the ample generator of its Picard group; then the canonical bundle of the variety $X$ is isomorphic to $\mathcal{O}(-w)$, where $w=2n-2$.

We study $\mathrm{D}^{b}(X)$, the bounded derived category of coherent sheaves on $X$. We construct minimal Lefschetz collections on the Grassmannians $\operatorname{IGr}(3,2n)$ and prove their fullness. A Lefschetz collection on $X$ is an exceptional collection

$$ \begin{equation} \mathcal{E}_1,\dots,\mathcal{E}_{a_1}, \ \mathcal{E}_1(1),\dots,\mathcal{E}_{a_2}(1), \ \dots, \ \mathcal{E}_1(w-1),\dots,\mathcal{E}_{a_{w}}(w-1), \end{equation} \tag{1} $$
where $a_1 \geqslant a_2 \geqslant \dots \geqslant a_{w}$. The set $\{\mathcal{E}_1, \dots, \mathcal{E}_{a_1}\}$ is called the first block of the Lefschetz collection. The collection is called minimal if its length equals the rank of $K_0(X)$ and $a_1$ is minimal, and it is called rectangular if $a_1 = \dots = a_w$. It is easy to see that $a_1 \geqslant \operatorname{rk} K_0(X)/w$, and for full rectangular collections equality is achieved, so they are automatically minimal. Minimal Lefschetz collections were constructed on $\operatorname{IGr}(k,2n)$ for $k=1$ and $k=2$ in [1] and [2], respectively, for $k=3$ and $n$ equal to $3$, $4$, or $5$ in [3], [4], and [5], respectively, and for $k = n$ equal to $4$ or $5$ in [6].

In this note we construct full minimal Lefschetz collections on $\operatorname{IGr}(3,2n)$ for arbitrary $n$, thus generalizing the known results.

We denote by $\mathcal{O}$, $\mathcal{U} \subset V \otimes \mathcal{O}$, and $\mathcal{U}^{\vee}$ the structure sheaf, tautological vector bundle on $X$, and its dual, respectively. Thus, $\operatorname{rk} \mathcal{U} = 3$ and $\wedge^{3} \mathcal{U}^{\vee} \simeq \mathcal{O}(1)$. Since the bundle $\mathcal{U}$ is isotropic at each point, $\mathcal{U}$ is embedded into its orthogonal $\mathcal{U}^{\perp}$ with respect to $\omega$. Moreover, since the form $\omega$ is symplectic, it induces a symplectic form on the quotient $\mathcal{S} := \mathcal{U}^{\perp}/\mathcal{U}$. In particular, $\operatorname{rk} \mathcal{S} = 2n - 6$, and for any integer $0 \leqslant s \leqslant n - 3$ the symplectic exterior power

$$ \begin{equation*} \wedge_{\mathrm{Sp}}^{s}\mathcal{S}:=\operatorname{ker}(\wedge^{s}\mathcal{S} \xrightarrow{\omega_{\mathcal{S}}}\wedge^{s-2} \mathcal{S}) \end{equation*} \notag $$
is defined and $\operatorname{Sp}(V)$-equivariant. For a weight $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{Z}^3$, $\alpha_1 \geqslant \alpha_2 \geqslant \alpha_3$, applying the Schur functor $\Sigma^{\alpha}$ to the bundle $\mathcal{U}^{\vee}$ we obtain an irreducible $\operatorname{Sp}(V)$-equivariant vector bundle on $X$, and we have
$$ \begin{equation*} \Sigma^{\alpha} \mathcal{U}^{\vee} \simeq \Sigma^{(\alpha_{1}-\alpha_{3}, \alpha_{2}-\alpha_{3}, 0)} \mathcal{U}^{\vee}(\alpha_{3}) \quad \text{and} \quad \Sigma^{(\alpha_{1}, 0,0)} \mathcal{U}^{\vee} \simeq S^{\alpha_{1}} \mathcal{U}^{\vee}. \end{equation*} \notag $$

The structure of the exceptional collection depends on the remainder of $n$ modulo $3$. The simplest case is $n = 3m$ for $m \in \mathbb{Z}$, $m \geqslant 1$. Below we present the construction of an exceptional collection and the scheme of the proof of fullness in this case; the remaining cases are discussed in Remark 2.

We define the following set of bundles:

$$ \begin{equation} \begin{aligned} \, \nonumber \mathrm{B}&:=\{\Sigma^{(\alpha_1\kern-1pt,0,\alpha_3)} \mathcal{U}^{\vee} \mid 0 \leqslant\alpha_1-\alpha_3 \leqslant 4m-3,\ -2m+2 \leqslant \alpha_3 \leqslant 0\} \\ &\qquad\sqcup \{\wedge_{\mathrm{Sp}}^{s} \mathcal{S} \mid 2m-1\leqslant s \leqslant 3m-3\}. \end{aligned} \end{equation} \tag{2} $$
On $\mathrm{B}$ we introduce an arbitrary total order consistent with the natural partial order on the set $\{\Sigma^\alpha\mathcal{U}\}$ and such that $\Sigma^\alpha\mathcal{U} < \wedge_{\mathrm{Sp}}^{s} \mathcal{S}$ for all $\alpha$ and $s$.

Theorem 1. The collection of equivariant vector bundles

$$ \begin{equation*} \mathrm{C} := \mathrm{B} \sqcup \mathrm{B}(1) \sqcup \cdots \sqcup \mathrm{B}(6m - 3) \end{equation*} \notag $$
is a full rectangular Lefschetz collection on $\operatorname{IGr}(3,6m)$.

As the main tool for verifying the exceptionality of the collection we use the symplectic version of the Borel–Bott–Weil theorem. For irreducible bundles the proof reduces to a direct computation of cohomology for the corresponding tensor products.

The proof of fullness follows [5] and uses staircase complexes [7] and secondary staircase complexes [8], with the help of which new equivariant bundles are successively constructed in the subcategory $\langle \mathrm{C} \rangle \subset \mathrm{D}^b(X)$ generated by the collection $\mathrm{C}$. Thus, for the set

$$ \begin{equation*} \mathrm{T}:=\{\Sigma^{(\alpha_1,0,\alpha_3)} \mathcal{U}^\vee \mid 0 \leqslant \alpha_1-\alpha_3 \leqslant 6m-3,\ -6m+3 \leqslant \alpha_3 \leqslant 0\} \end{equation*} \notag $$
the inclusion $\mathrm{T}(l) \subset \langle \mathrm{C} \rangle$ is first proved for $0 \leqslant l \leqslant 6m - 3$ and then for all integers $l$. Fullness now follows from the fact that $\bigoplus_{l = 0}^{\dim(X)} \mathcal{O}(l) \cong \bigoplus_{l = 0}^{18m-12} \Sigma^{(0,0,0)}\mathcal{U}^\vee(l)$ is a generator in $\mathrm{D}^b(X)$.

Remark 2. If $n = 3m + e$ for $e \in \{1, 2\}$, then in addition to the block of irreducible bundles similar to the block (2), namely,

$$ \begin{equation*} \begin{aligned} \, \{\Sigma^{(\alpha_1,0,\alpha_3)} \mathcal{U}^{\vee} &\mid 0 \leqslant\alpha_1-\alpha_3 \leqslant 4m+e-3,\ -2m-e+2 \leqslant \alpha_3 \leqslant 0\} \\ {}\sqcup{}\{\wedge_{\mathrm{Sp}}^{s}\mathcal{S} &\mid 2m+e-1\leqslant s \leqslant n-3\}, \end{aligned} \end{equation*} \notag $$
consider the left mutation with respect to the exceptional collection
$$ \begin{equation*} \mathcal{H}:=\mathbb{L}_{\{\Sigma^{\alpha} \mathcal{U}^{\vee} \mid 0 \leqslant \alpha \leqslant (\phi_{1}-1, \phi_{2}, 0)\}} (\Sigma^{\phi}\mathcal{U}^{\vee}), \quad \text{where} \ \ \phi=(4m+e-2,2m-1,0), \end{equation*} \notag $$
which is placed at the end of the block. Then

The proof is similar to the proof of Theorem 1. The mutation defining the object $\mathcal{H}$ is explicitly written as a truncation of a certain secondary staircase complex. Its terms are truncations of staircase complexes, which are expressed in terms of bundles of the form $\Sigma^\alpha\mathcal{U}^\vee$, allowing the proof in these cases to be reduced to computations with irreducible bundles.


Bibliography

1. A. A. Beilinson, Funct. Anal. Appl., 12:3 (1978), 214–216  mathnet  crossref  mathscinet  zmath
2. A. Kuznetsov, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182  crossref  mathscinet  zmath
3. A. V. Samokhin, Russian Math. Surveys, 56:3 (2001), 592–594  mathnet  crossref  mathscinet  zmath  adsnasa
4. L. A. Guseva, Sb. Math., 211:7 (2020), 922–955  mathnet  crossref  mathscinet  zmath  adsnasa
5. A. Novikov, Lefschetz exceptional collections on isotropic Grassmannians, Master's thesis, HSE University, Moscow, 2020, 43 pp. https://www.hse.ru/edu/vkr/369850047
6. A. Polishchuk and A. Samokhin, J. Geom. Phys., 61:10 (2011), 1996–2014  crossref  mathscinet  zmath  adsnasa
7. A. V. Fonarev, Izv. Math., 77:5 (2013), 1044–1065  mathnet  crossref  mathscinet  zmath  adsnasa
8. A. A. Novikov, Mat. Sb., 216:7 (2025), 78–95 (Russian)  mathnet  crossref

Citation: A. A. Novikov, “Minimal Lefschetz Collections on Isotropic Grassmannians $\operatorname{IGr}(3,2n)$”, Russian Math. Surveys, 80:3 (2025), 543–545
Citation in format AMSBIB
\Bibitem{Nov25}
\by A.~A.~Novikov
\paper Minimal Lefschetz Collections on Isotropic Grassmannians $\operatorname{IGr}(3,2n)$
\jour Russian Math. Surveys
\yr 2025
\vol 80
\issue 3
\pages 543--545
\mathnet{http://mi.mathnet.ru/eng/rm10250}
\crossref{https://doi.org/10.4213/rm10250e}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025RuMaS..80..543N}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105015955595}
Linking options:
  • https://www.mathnet.ru/eng/rm10250
  • https://doi.org/10.4213/rm10250e
  • https://www.mathnet.ru/eng/rm/v80/i3/p187
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025