Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2006, Volume 61, Issue 1, Pages 19–78
DOI: https://doi.org/10.1070/RM2006v061n01ABEH004298
(Mi rm1715)
 

This article is cited in 18 scientific papers (total in 20 papers)

Integrable equations, addition theorems, and the Riemann–Schottky problem

V. M. Buchstaberab, I. M. Krichevercd

a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Manchester
c L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
d Columbia University
References:
Abstract: The classical Weierstrass theorem claims that, among the analytic functions, the only functions admitting an algebraic addition theorem are the elliptic functions and their degenerations. This survey is devoted to far-reaching generalizations of this result that are motivated by the theory of integrable systems. The authors discovered a strong form of the addition theorem for theta functions of Jacobian varieties, and this form led to new approaches to known problems in the geometry of Abelian varieties. It is shown that strong forms of addition theorems arise naturally in the theory of the so-called trilinear functional equations. Diverse aspects of the approaches suggested here are discussed, and some important open problems are formulated.
Received: 20.12.2005
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 14H42, 14H40; Secondary 14K20, 14K25, 37K10
Language: English
Original paper language: Russian
Citation: V. M. Buchstaber, I. M. Krichever, “Integrable equations, addition theorems, and the Riemann–Schottky problem”, Russian Math. Surveys, 61:1 (2006), 19–78
Citation in format AMSBIB
\Bibitem{BucKri06}
\by V.~M.~Buchstaber, I.~M.~Krichever
\paper Integrable equations, addition theorems, and the Riemann--Schottky problem
\jour Russian Math. Surveys
\yr 2006
\vol 61
\issue 1
\pages 19--78
\mathnet{http://mi.mathnet.ru/eng/rm1715}
\crossref{https://doi.org/10.1070/RM2006v061n01ABEH004298}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2239772}
\zmath{https://zbmath.org/?q=an:1134.14306}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006RuMaS..61...19B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238945400002}
\elib{https://elibrary.ru/item.asp?id=25787262}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746217559}
Linking options:
  • https://www.mathnet.ru/eng/rm1715
  • https://doi.org/10.1070/RM2006v061n01ABEH004298
  • https://www.mathnet.ru/eng/rm/v61/i1/p25
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025