Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1976, Volume 31, Issue 4, Pages 89–156
DOI: https://doi.org/10.1070/RM1976v031n04ABEH001560
(Mi rm3762)
 

This article is cited in 10 scientific papers (total in 10 papers)

Foundations of algebraic $K$-theory

L. N. Vaserstein
References:
Abstract: The fundamental concepts of (general) algebraic $K$-theory are expounded and it is proved that the higher $K$-functors of Volodin, Quillen, Swan and Gersten are the same.
Received: 26.02.1975
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: L. N. Vaserstein, “Foundations of algebraic $K$-theory”, Russian Math. Surveys, 31:4 (1976), 89–156
Citation in format AMSBIB
\Bibitem{Vas76}
\by L.~N.~Vaserstein
\paper Foundations of~algebraic $K$-theory
\jour Russian Math. Surveys
\yr 1976
\vol 31
\issue 4
\pages 89--156
\mathnet{http://mi.mathnet.ru/eng/rm3762}
\crossref{https://doi.org/10.1070/RM1976v031n04ABEH001560}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=427426}
\zmath{https://zbmath.org/?q=an:0356.18015|0359.18015}
Linking options:
  • https://www.mathnet.ru/eng/rm3762
  • https://doi.org/10.1070/RM1976v031n04ABEH001560
  • https://www.mathnet.ru/eng/rm/v31/i4/p87
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025